Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- ;
- ;
- (the b-Hausdorff distance between A and B).
- (i)
- if and only if ;
- (ii)
- (Symmetry) ;
- (iii)
- (s-relaxed triangle inequality) .
- (i)
- if and only if ;
- (ii)
- (Symmetry) ;
- (iii)
- (s-relaxed triangle inequality) .
3. Covitz–Nadler-Type Fixed-Point Theorems
4. Local Version of the Covitz–Nadler Theorem
- ;
- for all x, .
- ;
- for all .
- The set is a closed set;
- ;
- for all x, .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coifman, R.; de Guzman, M. Singular integrals and multipliers on homogeneous spaces. Rev. Union Mat. Argent. 1970, 35, 137–144. [Google Scholar]
- Coifman, R.; Weiss, G. Analyse Harmonique Non-Commutative sur Certains Spaces Homogenes, Etude de Certaines Integmles Singulieres; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1971; Volume 242. [Google Scholar]
- Donggao, D.; Yongsheng, H. Harmonic Analysis on Spaces of Homogeneous Type; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2009; Volume 1966. [Google Scholar]
- Mitrea, D.; Mitrea, I.; Mitrea, M.; Monniaux, S. Groupoid Metrization Theory, with Applications to Analysis on Quasi-Metric Spaces and Functional Analysis; Applied and Numerical Harmonic Analysis; Birkhäuser: New York, NY, USA, 2013. [Google Scholar]
- Macias, R.A.; Segovia, C. Lipschitz functions on spaces of homogeneous type. Adv. Math. 1979, 33, 257–270. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: New York, NY, USA, 2014. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Deimling, K. Multi-Valued Differential Equations; De Gruyter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Beer, G.; Dontchev, A.L. The weak Ekeland variational principle and fixed points. Nonlinear Anal. 2014, 102, 91–96. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Hager, W.W. An inverse mapping theorem for setvalued maps. Proc. Am. Math. Soc. 1994, 121, 481–489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slimani, B.; Graef, J.R.; Ouahab, A. Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces. Mathematics 2024, 12, 567. https://doi.org/10.3390/math12040567
Slimani B, Graef JR, Ouahab A. Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces. Mathematics. 2024; 12(4):567. https://doi.org/10.3390/math12040567
Chicago/Turabian StyleSlimani, Bachir, John R. Graef, and Abdelghani Ouahab. 2024. "Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces" Mathematics 12, no. 4: 567. https://doi.org/10.3390/math12040567
APA StyleSlimani, B., Graef, J. R., & Ouahab, A. (2024). Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces. Mathematics, 12(4), 567. https://doi.org/10.3390/math12040567