Next Article in Journal
Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion
Previous Article in Journal
Optimal Decisions on Greenness, Carbon Emission Reductions, and Flexibility for Imperfect Production with Partial Outsourcing
Previous Article in Special Issue
Development of a New Zeta Formula and Its Role in Riemann Hypothesis and Quantum Physics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Two Approximation Formulas for Gamma Function with Monotonic Remainders

by
Mansour Mahmoud
1,*,† and
Hanan Almuashi
2,†
1
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Department of Mathematics and Statistics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2024, 12(5), 655; https://doi.org/10.3390/math12050655
Submission received: 14 January 2024 / Revised: 22 February 2024 / Accepted: 22 February 2024 / Published: 23 February 2024
(This article belongs to the Special Issue New Trends in Special Functions and Applications)

Abstract

:
In this paper, two new approximation formulas with monotonic remainders for the gamma function have been presented. Also, we present some numerical comparisons between our new approximation formulas and some known ones, which demonstrate the superiority of our results.

1. Introduction

The ordinary Euler gamma function is defined as follows [1]:
Γ ( r ) = 0 e t t r 1 d t ,       r > 0
or by
Γ ( r ) = lim n n ! n r r ( r + 1 ) ( r + 2 ) ( r + n ) ,       r R { 0 , 1 , 2 , } .
The derivative of ln Γ ( r ) , denoted by ψ ( r ) = Γ ( r ) Γ ( r ) , is called the digamma function and the derivatives ψ ( n ) ( r ) for n 0 are referred to as the polygamma functions. For more information about gamma function and polygamma functions see [2,3,4,5,6], as well as the closely linked references therein, for further details.
Many disciplines of mathematics and other fields of research make substantial use of the Gamma function Γ ( r ) , which generalises the factorial function n ! = Γ ( n + 1 ) . In numerical techniques and algorithms, when exact assessments are computationally costly, gamma function approximations are essential and functions involving the Gamma function can be efficiently computed with the use of approximations [7]. Gamma function approximations are widely used in engineering and physics for the analysis of systems that show exponential decay, such as radioactive decay, fluid dynamics, and signal processing [8]. Also, Gamma function and its approximations are used in machine learning and pattern recognition in various algorithms, such as those involving probabilistic models, maximum likelihood estimation, and Bayesian inference [9].
Numerous studies concentrate on developing more precise estimates for the gamma function. Here are some of the approximate formulas most commonly used for the gamma function with bounds for their remainder functions:
Stirling’s approximation formula (see [10,11,12])
Γ ( r + 1 ) = 2 π r r e r exp σ 1 ( r ) 12 r ,  
where
0 < σ 1 ( r ) < 1 ,       r > 0 .
Ramanujan’s approximation formula (see [13,14,15])
Γ ( r + 1 ) = π r e r 8 r 3 + 4 r 2 + r + σ 2 ( r ) 6 ,
where
1 100 < σ 2 ( r ) < 1 30 ,       r > 0 .
Burnside’s approximation formula (see [16,17,18])
Γ ( r + 1 ) = 2 π r + 1 2 e r + 1 2 exp ( σ 3 ( r ) ) ,
where
ln e π < σ 3 ( r ) < 0 ,       r > 0 .
Gosper’s approximation formula (see [19,20,21])
Γ ( r + 1 ) = 2 π r e r r + 1 6 1 / 2   σ 4 ( r ) ,
where
1 < σ 4 ( r ) < 3 e 2 7 π ,       r 1 .
Windschitl’s approximation formula (see [22,23,24])
Γ ( r + 1 ) = 2 π r r e r r sinh 1 r r / 2 exp σ 5 ( r ) r 5 ,
where
0 < σ 5 ( r ) < 1 1620 ,       r > 0 .
Nemes’s approximation formula (see [25,26,27])
Γ ( r + 1 ) = 2 π r r e r 1 + 1 12 r 2 σ 6 ( r ) r ,
where
1 10 < σ 6 ( r ) < 1 9 ,       r 4 .
C.-P. Chen’s approximation formula (see [28])
Γ ( r + 1 ) = 2 π r r e r 1 12 r 3 + 24 r 7 1 2 + 1 r 2 + 53 210 σ 7 ( r ) r 9 2117 5080320 r 7 + 1 ,
where
0 < σ 7 ( r ) < 1892069 2347107840 ,       r 2 .
Yang and Tian’s approximation formula (see [29])
Γ ( r + 1 ) = 2 π r r e r r sinh 1 r r / 2 exp 7 324 r 3 35 r 2 + 33 σ 8 ( r ) ,
where
1 < σ 8 ( r ) < exp 33041 22032 e 2 1 π ,       r 1 .
Mahmoud and Almuashi’s approximation formula (see [30,31])
Γ ( r + 1 ) = 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 1 + σ 9 ( r ) r 5 ,
where
  0 < σ 9 ( r ) < 461 907200 ,       r 1 .
The goal of this study is to introduce two new approximation formulas for the gamma function with monotonic remainders in light of Mahmoud and Almuashi’s results. We also offer some numerical comparisons to show how our results outperform some of the formulas listed above.

2. Main Results

Theorem 1.
The remainder function θ 1 ( r ) defined from
Γ ( r + 1 ) = 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 exp 1 r 7 461 907200 r 2 + θ 1 ( r ) ,       r 1
is strictly decreasing with the sharp constant
5197 9072000 < θ 1 ( r ) ln 57 134 π exp 906739 453600 ,       r 1 .
Proof. 
For r > 1 , we have
θ 1 ( r ) = 1 2 r 7 ln ( 2 π ) 2 ln exp r 461 907200 r 5 r 2 + 7 60 r 2 1 20 r 2 r r 1 2 Γ ( r + 1 )
and hence
θ 1 ( r ) = 7 r 7 + r 7 ψ ( r + 1 ) r 6 2 7 2 r 6 ln ( 2 ) 7 2 r 6 ln ( π ) 1 2 ( 16 r + 7 ) r 6 ln ( r ) + 7 r 6 ln ( Γ ( r + 1 ) ) 4 r 7 ln r 2 + 7 60 r 2 1 20 + 200 r 9 1200 r 4 + 80 r 2 7 461 r 453600 .
Now, consider the two functions
H 1 ( r ) = d d r 1 r 6 d θ 1 ( r ) d r = 461 453600 r 5 4 r ln r 2 + 7 60 r 2 1 20 + 200 r 3 1200 r 4 + 80 r 2 7 + 7 r 8 r ln ( r ) 7 2 ln ( 2 π r ) + r ψ ( r + 1 ) + 7 ln Γ ( r + 1 ) 1 2 ,
and
H 2 ( r ) = H 1 ( r ) H 1 ( r + 1 ) = 461 90720 r 6 + 7 20 r 2 1 + 49 60 r 2 + 7 + 98 60 r 2 + 7 2 2 1 20 r 2 2 7 2 r 7 2 ( r + 1 ) 461 90720 ( r + 1 ) 6 7 20 r ( r + 2 ) + 19 + 2 ( 20 r ( r + 2 ) + 19 ) 2 49 60 r ( r + 2 ) + 67 98 ( 60 r ( r + 2 ) + 67 ) 2 8 ln r + 8 ln ( r + 1 ) + 4 ln 10 60 r ( r + 2 ) + 57 + 1 4 ln 10 60 r 2 3 + 1 ψ ( r + 1 ) .
Using the recurrence formula (see [1])
ψ ( r + 1 ) = 1 r + ψ ( r ) ,
then we have
d d r H 2 ( r ) H 2 ( r + 1 ) = H 3 ( r ) H 4 ( r ) ,
where
H 3 ( r + 1 ) = 7.78127 × 10 32 r 44 6.84751 × 10 34 r 43 2.93473 × 10 36 r 42 8.1629 × 10 37 r 41 1.65674 × 10 39 r 40 2.6155 × 10 40 r 39 3.34341 × 10 41 r 38 3.55706 × 10 42 r 37 3.21293 × 10 43 r 36 2.50108 × 10 44 r 35 1.69753 × 10 45 r 34 1.01383 × 10 46 r 33 5.36771 × 10 46 r 32 2.53456 × 10 47 r 31 1.07262 × 10 48 r 30 4.08484 × 10 48 r 29 1.40453 × 10 49 r 28 4.37204 × 10 49 r 27 1.23474 × 10 50 r 26 3.16911 × 10 50 r 25 7.40155 × 10 50 r 24 1.57439 × 10 51 r 23 3.05161 × 10 51 r 22 5.39063 × 10 51 r 21 8.67673 × 10 51 r 20 1.27186 × 10 52 r 19 1.69626 × 10 52 r 18 2.05563 × 10 52 r 17 2.25965 × 10 52 r 16 2.24814 × 10 52 r 15 2.01885 × 10 52 r 14 1.6309 × 10 52 r 13 1.18036 × 10 52 r 12 7.61567 × 10 51 r 11 4.35389 × 10 51 r 10 2.18922 × 10 51 r 9 9.59241 × 10 50 r 8 3.62017 × 10 50 r 7 1.15922 × 10 50 r 6 3.08733 × 10 49 r 5 6.65309 × 10 48 r 4 1.11436 × 10 48 r 3 1.36085 × 10 47 r 2 1.07762 × 10 46 r 4.15224 × 10 44 < 0 ,       r > 0
and
H 4 ( r + 1 ) = 7560 ( r + 1 ) 7 ( r + 2 ) 7 ( r + 3 ) 7 20 r 2 + 40 r + 19 3 20 r 2 + 80 r + 79 3 20 r 2 + 120 r + 179 3 60 r 2 + 120 r + 67 3 60 r 2 + 240 r + 247 3 60 r 2 + 360 r + 547 3 > 0 ,       r > 0 .
Then, the function H 2 ( r ) H 2 ( r + 1 ) is strictly decreasing for r 1 .
Using the derivative of the asymptotic formula (see [14])
ψ ( r ) ln r 1 r s = 1 B s s r s ,       r
where B s are the Bernoulli numbers generated by [1]
s = 0 B s s ! r s = r e r 1 = 1 r 2 + s = 1 B 2 s ( 2 s ) ! r 2 s ,       | r | < 2 π ,
we get
H 2 ( r ) H 2 ( r + 1 ) 1436249 864000 r 12 1436249 72000 r 13 + 563824855621 4082400000 r 14 + ,       r
and lim r H 2 ( r ) H 2 ( r + 1 ) = 0 . Therefore, the function H 2 ( r ) H 2 ( r + 1 ) is positive for r 1 .
Hence,
H 2 ( r ) > H 2 ( r + 1 ) ,       r 1
and then
H 2 ( r ) > H 2 ( r + 1 ) > H 2 ( r + 2 ) > > H 2 ( r + n ) ,       r 1 .
Again, using the derivative of the asymptotic Formula (4), we obtain
H 2 ( r ) 1436249 9504000 r 11 1436249 1728000 r 12 + 15339610187 6633900000 r 13 + ,       r
and hence, lim n H 2 ( r + n ) = 0 . Then H 2 ( r ) = H 1 ( r ) H 1 ( r + 1 ) > 0 for r 1 , and therefore we have
H 1 ( r ) > H 1 ( r + 1 ) > H 1 ( r + 2 ) > > H 1 ( r + n ) ,       r 1 .
Using the asymptotic Formula (4) and the asymptotic series, known as Stirling’s series [14],
ln Γ ( r ) ( r 1 / 2 ) ln r r + ln 2 π + s = 1 B s 2 s ( 2 s 1 ) r 2 s 1 ,       r
we get
H 1 ( r ) 1436249 95040000 r 10 26863154077 318427200000 r 12 + 326590926551 653184000000 r 14 + ,       r
and lim n H 1 ( r + n ) = 0 . Hence H 1 ( r ) = d d r 1 r 6 d θ 1 ( r ) d r > 0 for r 1 and then the function 1 r 6 d θ 1 ( r ) d r is strictly increasing for r 1 . Using the two the asymptotic Formulas (4) and (6), we have
d θ 1 ( r ) d r 1436249 855360000 r 3 + 26863154077 3502699200000 r 5 326590926551 8491392000000 r 7 + ,       r
we have lim r 1 r 6 d θ 1 ( r ) d r = 0 . Then 1 r 6 d θ 1 ( r ) d r < 0 for r 1 or θ 1 ( r ) is decreasing function for r 1 .
Using the asymptotic Formula (6), we have
θ 1 ( r ) 5197 9072000 + 1436249 1710720000 r 2 26863154077 14010796800000 r 4 + ,       r
which gives lim r θ 1 ( r ) = 5197 9072000 and the function θ 1 ( r ) satisfies
5197 9072000 < θ 1 ( r ) θ 1 ( 1 ) ,       r 1
with sharp constants. □
Using the bounds of the function θ 1 ( r ) in Theorem 1, we get the following result:
Corollary 1.
The following inequality holds for r 1
exp 1 r 7 461 907200 r 2 + c 1 < Γ ( r + 1 ) 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 < exp 1 r 7 461 907200 r 2 + c 2
with sharp constants
c 1 = lim r θ 1 ( r ) = 5197 9072000 0.000572862
and
c 2 = θ 1 ( 1 ) = ln 57 134 π exp 906739 453600 0.000267366 .
Theorem 2.
The remainder function θ 2 ( r ) defined from
Γ ( r + 1 ) = 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 exp 461 907200 r 3 r 2 + 5197 4610 + θ 2 ( r ) r 9 ,       r 1
is strictly increasing with sharp constants
57 134 π exp 889478519 444845520 < θ 2 ( r ) < 213922547 1104098688000 ,       r 1 .
Proof. 
For r > 1 , we have
θ 2 ( r ) = 1 2 r 9 ln ( 2 π ) 2 ln exp r 461 907200 r 3 r 2 + 5197 4610 r 2 + 7 60 r 2 1 20 r 2 r r 1 2 Γ ( r + 1 )
and hence
θ 2 ( r ) = 9 r 9 10 r 9 ln ( r ) + r 9 ψ ( r + 1 ) r 8 2 9 2 r 8 ln ( 2 π r ) + 9 r 8 ln ( Γ ( r + 1 ) ) 5197 r 4536000 5197 4610 r 2 + 1 2 5 r 9 ln r 2 + 7 60 r 2 1 20 212521 r 5 22680 4610 r 2 + 5197 + 200 r 11 1200 r 4 + 80 r 2 7 .
Consider the two functions
K 1 ( r ) = d d r 1 r 8 d θ 2 ( r ) d r = 5 r ln r 2 + 7 60 r 2 1 20 5197 4536000 5197 4610 r 2 + 1 2 r 7 212521 22680 r 3 4610 r 2 + 5197 1 2 + 200 r 3 1200 r 4 + 80 r 2 7 + 9 r 10 r ln ( r ) 9 2 ln ( 2 π r ) + r ψ ( r + 1 ) + 9 ln Γ ( r + 1 ) ,
and
K 2 ( r ) = K 1 ( r ) K 1 ( r + 1 ) = 212521 26192880 r 4 97972181 30627989406 r 2 + 9 20 r 2 1 + 63 60 r 2 + 7 + 98 60 r 2 + 7 2 + 225825877205 15313994703 4610 r 2 + 5197 1129129386025 11786796 4610 r 2 + 5197 2 2 1 20 r 2 2 225825877205 567 4610 r 2 + 5197 3 5 ln 10 60 r 2 3 + 1 9 2 r 9 2 ( r + 1 ) + 97972181 30627989406 ( r + 1 ) 2 212521 26192880 ( r + 1 ) 4 9 20 r ( r + 2 ) + 19 63 60 r ( r + 2 ) + 67 98 ( 60 r ( r + 2 ) + 67 ) 2 225825877205 15313994703 ( 4610 r ( r + 2 ) + 9807 ) + 1129129386025 11786796 ( 4610 r ( r + 2 ) + 9807 ) 2 + 225825877205 567 ( 4610 r ( r + 2 ) + 9807 ) 3 10 ln ( r ) + 10 ln ( r + 1 ) + 5 ln 10 60 r ( r + 2 ) + 57 + 1 + 2 ( 20 r ( r + 2 ) + 19 ) 2 ψ ( r + 1 ) .
Using the recurrence Formula (3), then we have
d d r K 2 ( r ) K 2 ( r + 1 ) = K 3 ( r ) K 4 ( r ) ,
where
K 3 ( r + 1 ) = 5.1341 × 10 76 r 60 + 6.16092 × 10 78 r 59 + 3.63085 × 10 80 r 58 + 1.40077 × 10 82 r 57 + 3.97869 × 10 83 r 56 + 8.87201 × 10 84 r 55 + 1.61734 × 10 86 r 54 + 2.47835 × 10 87 r 53 + 3.25771 × 10 88 r 52 + 3.73018 × 10 89 r 51 + 3.7657 × 10 90 r 50 + 3.38418 × 10 91 r 49 + 2.72884 × 10 92 r 48 + 1.98729 × 10 93 r 47 + 1.31427 × 10 94 r 46 + 7.92993 × 10 94 r 45 + 4.38263 × 10 95 r 44 + 2.22618 × 10 96 r 43 + 1.04236 × 10 97 r 42 + 4.51033 × 10 97 r 41 + 1.8075 × 10 98 r 40 + 6.72121 × 10 98 r 39 + 2.32284 × 10 99 r 38 + 7.47125 × 10 99 r 37 + 2.23912 × 10 100 r 36 + 6.25886 × 10 100 r 35 + 1.63302 × 10 101 r 34 + 3.97955 × 10 101 r 33 + 9.06207 × 10 101 r 32 + 1.92888 × 10 102 r 31 + 3.83831 × 10 102 r 30 + 7.14059 × 10 102 r 29 + 1.24174 × 10 103 r 28 + 2.01795 × 10 103 r 27 + 3.06324 × 10 103 r 26 + 4.34098 × 10 103 r 25 + 5.73855 × 10 103 r 24 + 7.07001 × 10 103 r 23 + 8.10872 × 10 103 r 22 + 8.64618 × 10 103 r 21 + 8.55775 × 10 103 r 20 + 7.84827 × 10 103 r 19 + 6.65518 × 10 103 r 18 + 5.20555 × 10 103 r 17 + 3.74528 × 10 103 r 16 + 2.47066 × 10 103 r 15 + 1.48877 × 10 103 r 14 + 8.15907 × 10 102 r 13 + 4.04608 × 10 102 r 12 + 1.80466 × 10 102 r 11 + 7.18795 × 10 101 r 10 + 2.53455 × 10 101 r 9 + 7.82839 × 10 100 r 8 + 2.09009 × 10 100 r 7 + 4.74271 × 10 99 r 6 + 8.94464 × 10 98 r 5 + 1.3598 × 10 98 r 4 + 1.59388 × 10 97 r 3 + 1.34296 × 10 96 r 2 + 7.1649 × 10 94 r + 1.78658 × 10 93 > 0 ,       r > 0
and
K 4 ( r + 1 ) = 1890 ( r + 1 ) 5 ( r + 2 ) 5 ( r + 3 ) 5 20 r 2 + 40 r + 19 3 20 r 2 + 80 r + 79 3 20 r 2 + 120 r + 179 3 60 r 2 + 120 r + 67 3 60 r 2 + 240 r + 247 3 4610 r 2 + 18440 r + 23637 4 4610 r 2 + 27660 r + 46687 4 60 r 2 + 360 r + 547 3 4610 r 2 + 9220 r + 9807 4 > 0 ,       r > 0 .
Then, the function K 2 ( r ) K 2 ( r + 1 ) is strictly increasing for r 1 .
Using the asymptotic Formula (4), we get
K 2 ( r ) K 2 ( r + 1 ) 708238139903501 173519146080000 r 14 + 708238139903501 12394224720000 r 15 + ,       r
and lim r K 2 ( r ) K 2 ( r + 1 ) = 0 . Therefore, the function K 2 ( r ) K 2 ( r + 1 ) is negative for r 1 . Hence,
K 2 ( r ) < K 2 ( r + 1 ) ,       r 1
and then
K 2 ( r ) < K 2 ( r + 1 ) < K 2 ( r + 2 ) < < K 2 ( r + n ) ,       r 1 .
Again, using the derivative of the asymptotic Formula (4), we obtain
K 2 ( r ) 708238139903501 2255748899040000 r 13 + 708238139903501 347038292160000 r 14 + ,       r
and hence, lim n K 2 ( r + n ) = 0 . Then, K 2 ( r ) = K 1 ( r ) K 1 ( r + 1 ) < 0 for r 1 , and therefore we have
K 1 ( r ) < K 1 ( r + 1 ) < K 1 ( r + 2 ) < < K 1 ( r + n ) ,       r 1 .
Using the two asymptotic Formulas (4) and (6), we have
K 1 ( r ) 708238139903501 27068986788480000 r 12 + 5580017896128641687 19198158322291200000 r 14 + ,       r
and lim n K 1 ( r + n ) = 0 . Hence, K 1 ( r ) = d d r 1 r 8 d θ 2 ( r ) d r < 0 for r 1 and then the function 1 r 8 d θ 2 ( r ) d r is strictly decreasing for r 1 . Using the two asymptotic Formulas (4) and (6), we get
d θ 2 ( r ) d r 708238139903501 297758854673280000 r 3 5580017896128641687 249576058189785600000 r 5 + ,       r
and lim r 1 r 8 d θ 2 ( r ) d r = 0 . Then 1 r 8 d θ 2 ( r ) d r > 0 for r 1 or θ 2 ( r ) is increasing function for r 1 .
Using the asymptotic Formula (6), we obtain
θ 2 ( r ) 213922547 1104098688000 708238139903501 595517709346560000 r 2 + 5580017896128641687 998304232759142400000 r 4 + ,       r .
Then, lim r θ 2 ( r ) = 213922547 1104098688000 and the function θ 2 ( r ) satisfies
θ 2 ( 1 ) < θ 2 ( r ) < 213922547 1104098688000 ,       r 1
with sharp constants. □
Using the bounds of the function θ 2 ( r ) in Theorem 2, we get the following result:
Corollary 2.
The following inequality holds for r 1
exp 461 907200 r 3 r 2 + 5197 4610 + c 3 r 9 < Γ ( r + 1 ) 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 < exp 461 907200 r 3 r 2 + 5197 4610 + c 4 r 9
with sharp constants
c 3 = θ 2 ( 1 ) = ln 57 134 π exp 889478519 444845520 1.92045 × 10 6
and
c 4 = lim r θ 2 ( r ) = 213922547 1104098688000 0.000193753 .

3. Numerical Comparisons of Some Gamma Function Approximation Formulas

In this section, we contrast the numerical performance of a number of gamma function approximation formulas with our new formulations. Firstly, we will compare the following lower approximation formulas [13,21,23,28,29]:
L 1 ( r ) = π r e r 8 r 3 + 4 r 2 + r + e 6 π 3 13 6 ,   r 1 ( Ramanujan ) L 2 ( r ) = 2 π r e r r + 1 6 1 / 2 ,   r 1 ( Gosper ) L 3 ( r ) = 2 π r r e r r sinh 1 r r / 2 ,   r > 0 ( Windschitl ) L 4 ( r ) = 2 π r r e r 1 12 r 3 + 24 r 7 1 2 + 1 r 2 + 53 210 2117 5080320 r 7 + 1 ,   r 2 ( Chen ) L 5 ( r ) = 2 π r r e r r sinh 1 r r / 2 exp 7 324 r 3 35 r 2 + 33 ,   r 1 ( Yang   and   Tian )
with our new lower approximation formula
L 6 ( r ) = 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 exp c 3 r 9 + 461 907200 r 3 r 2 + 5197 4610   r 1
From the graphs in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5, we can see that our new approximation L 6 is better than the approximations L 1 , L 2 , L 3 , L 4 , and L 5 for larger values of r as lower bounds of the function Γ ( r + 1 ) for r 1 .
Secondly, we will compare the following upper approximation formulas [13,21,23,28,29]:
U 1 ( r ) = π r e r 8 r 3 + 4 r 2 + r + 1 30 6 ,   r 1 ( Ramanujan ) U 2 ( r ) = 2 π r e r r + 1 6 1 / 2 3 e 2 7 π ,   r 1 ( Gosper ) U 3 ( r ) = 2 π r r e r 1 1620 r 5 + 1 r sinh 1 r r / 2 ,   r > 0 ( Windschitl ) U 4 ( r ) = 2 π r r e r 1 12 r 3 + 24 r 7 1 2 + 1 r 2 + 53 210 c 5 r 9 2117 5080320 r 7 + 1 ,   r 2 ( Chen ) U 5 ( r ) = 2 π r r e r r sinh 1 r r / 2 exp 7 324 r 3 35 r 2 + 33 exp 33041 22032 e 2 1 π ,   r 1 ( Yang   and   Tian )
where c 5 = 1892069 2347107840 , with our new upper approximation formula
U 6 ( r ) = 2 π r r e r r 2 + 7 60 r 2 1 20 r / 2 exp c 4 r 9 + 461 907200 5197 4610 r 2 + 1 r 5 ,       r 1 .
From the graphs in Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10, we can see that our new approximation U 6 is better than the approximations U 1 , U 2 , U 3 , U 4 , and U 5 for larger values of r as upper bounds of the function Γ ( r + 1 ) for r 1 .
Using the asymptotic Laplace’s formula (see [32])
Γ ( r + 1 ) 2 π r r e r 1 + 1 12 r + 1 288 r 2 139 51840 r 3 571 2488320 r 4 + 163879 209018880 r 5 ,       r
we obtain the following behaviour of the above mentioned bounds:
Γ ( r + 1 ) = L 1 ( r ) 1 + O r 3 ,       r Γ ( r + 1 ) = L 2 ( r ) 1 + O r 2 ,       r Γ ( r + 1 ) = L 3 ( r ) 1 + O r 5 ,       r Γ ( r + 1 ) = L 4 ( r ) 1 + O r 9 ,       r Γ ( r + 1 ) = L 5 ( r ) 1 + O r 9 ,       r Γ ( r + 1 ) = L 6 ( r ) 1 + O r 9 ,       r
and
Γ ( r + 1 ) = U 1 ( r ) 1 + O r 4 ,       r Γ ( r + 1 ) = U 3 ( r ) 1 + O r 7 ,       r Γ ( r + 1 ) = U 4 ( r ) 1 + O r 7 ,       r Γ ( r + 1 ) = U 6 ( r ) 1 + O r 11 ,       r .
Therefore, the faster asymptotic formula in the above-mentioned formulas will be U 6 ( r ) with a rate of convergence like 1 r 11 .
Our new bounds are, of course, superior to those in [31], which deduced from the bounds of the remainder function σ 9 ( r ) . Also, even though the bounds in [30] are superior to our new bounds, what strengthens our results and gives them an advantage is proving that the remainders θ 1 ( r ) and θ 2 ( r ) are monotonic and bounded in the new approximation formulas, which was not discussed in [30].

4. Discussion

We have provided an explanation of the importance of gamma function approximations and some of their applications in some sciences. Theorems (1) and (2) outline the key findings of this paper. In more concrete terms, using the formula presented by Mahmoud and Almuashi, we provided two new approximation formulas for the Gamma function that are numerically more precise than some previously mentioned formulas. Additionally, these formulas have monotonic and bounded remainder functions, which are important in practical calculations because they provide measures of how accurate the approximations are and produce new inequalities of Γ ( r ) . Finally, we have shown the rate of convergence of some approximation formulas for large values of r to facilitate comparisons with the new formulas deduced in this work.

Author Contributions

Writing to Original draft, M.M. and H.A. All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Andrews, G.E.; Askey, R.A.; Roy, R. Special Functions, Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  2. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Topics in special functions II. Conform. Geom. Dyn. 2007, 11, 250–270. [Google Scholar] [CrossRef]
  3. Mahmoud, M.; Almuashi, H.; Moustafa, H. An asymptotic expansion for the generalized gamma function. Symmetry 2022, 14, 1412. [Google Scholar] [CrossRef]
  4. Qi, F.; Agarwal, R.P. Several functions Originating from Fisher–Rao geometry of Dirichlet distributions and involving Polygamma functions. Mathematics 2024, 12, 44. [Google Scholar] [CrossRef]
  5. Wang, M.K.; Chu, Y.M.; Song, Y.Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 2016, 276, 44–60. [Google Scholar] [CrossRef]
  6. Wang, M.K.; Chu, Y.M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. Ser. B Engl. Ed. 2017, 37, 607–622. [Google Scholar] [CrossRef]
  7. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
  8. Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists: A Comprehensive Guide, 7th ed.; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
  9. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
  10. Artin, E. The Gamma Function; Athena Series; Holt, Rinehart and Winston: New York, NY, USA, 1964. [Google Scholar]
  11. Beesack, P.R. Improvement of Stirling’s formula by elementary methods. Univ. Beograd Publ. Elektrotenhn Fak. Ser. Mat. Fiz. 1969, 274–301, 17–21. [Google Scholar]
  12. Mahmoud, M.; Alghamdi, M.A.; Agarwal, R.P. New upper bounds of n! J. Inequal. Appl. 2012, 2012, 27. [Google Scholar] [CrossRef]
  13. Karatsuba, E.A. On the asymptotic representation of the Euler Gamma function by Ramanujan. J. Comput. Appl. Math. 2001, 135, 225–240. [Google Scholar] [CrossRef]
  14. Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
  15. Chen, C.-P. Padé approximant related to Ramanujan’s formula for the Gamma function. Results Math. 2018, 73, 107. [Google Scholar] [CrossRef]
  16. Burnside, W. Arapidly convergent series for logN! Messenger Math. 1917, 46, 157–159. [Google Scholar]
  17. Batir, N. Inequalities for the gamma function. Arch. Math. 2008, 91, 554–563. [Google Scholar] [CrossRef]
  18. Mortici, C. On the gamma function approximation by Burnside. Appl. Math. E-Notes. 2011, 11, 274–277. [Google Scholar]
  19. Gosper, R.W. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 1978, 75, 40–42. [Google Scholar] [CrossRef]
  20. Batir, N. Very accurate approximations for the factorial function. J. Math. Inequal. 2010, 3, 335–344. [Google Scholar] [CrossRef]
  21. Mortici, C. Sharp inequalities related to Gosper’s formula. C. R. Acad. Sci. Paris 2010, 48, 137–140. [Google Scholar] [CrossRef]
  22. Programmable Calcualtors. Available online: http://www.rskey.org/CMS/the-library/11 (accessed on 20 April 2020).
  23. Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. Royal Soc. Edinburgh 2009, 139A, 709–718. [Google Scholar] [CrossRef]
  24. Yang, Z.-H.; Tian, J.-F. Windschitl type approximation formulas for the Gamma function. J. Inequal. Appl. 2018, 2018, 272. [Google Scholar] [CrossRef]
  25. Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
  26. Nemes, G. More accurate approximations for the gamma function. Thai J. Math. 2011, 9, 21–28. [Google Scholar]
  27. Mortici, C. A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 2013, 402, 405–410. [Google Scholar] [CrossRef]
  28. Chen, C.-P. A more accurate approximation for the gamma function. J. Number Theory 2016, 164, 417–428. [Google Scholar] [CrossRef]
  29. Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef] [PubMed]
  30. Mahmoud, M.; Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. [Google Scholar] [CrossRef]
  31. Mahmoud, M.; Alsulami, S.M.; Almarashi, S. On some bounds for the Gamma function. Symmetry 2023, 15, 937. [Google Scholar] [CrossRef]
  32. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Nation Bureau of Standards, Applied Mathematical Series; Dover Publications: New York, NY, USA, 1972; Volume 55. [Google Scholar]
Figure 1. The function L 6 ( r ) L 5 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Figure 1. The function L 6 ( r ) L 5 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Mathematics 12 00655 g001
Figure 2. The function L 6 ( r ) L 4 ( r ) Γ ( r + 1 ) for r [ 2 , 300 ] .
Figure 2. The function L 6 ( r ) L 4 ( r ) Γ ( r + 1 ) for r [ 2 , 300 ] .
Mathematics 12 00655 g002
Figure 3. The function L 4 ( r ) L 3 ( r ) Γ ( r + 1 ) for r [ 1 , 150 ] .
Figure 3. The function L 4 ( r ) L 3 ( r ) Γ ( r + 1 ) for r [ 1 , 150 ] .
Mathematics 12 00655 g003
Figure 4. The function L 3 ( r ) L 1 ( r ) Γ ( r + 1 ) for r [ 3 , 10 3 ] .
Figure 4. The function L 3 ( r ) L 1 ( r ) Γ ( r + 1 ) for r [ 3 , 10 3 ] .
Mathematics 12 00655 g004
Figure 5. The function L 1 ( r ) L 2 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Figure 5. The function L 1 ( r ) L 2 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Mathematics 12 00655 g005
Figure 6. The function U 5 ( r ) U 6 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Figure 6. The function U 5 ( r ) U 6 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Mathematics 12 00655 g006
Figure 7. The function U 4 ( r ) U 6 ( r ) Γ ( r + 1 ) for r [ 1 , 10 2 ] .
Figure 7. The function U 4 ( r ) U 6 ( r ) Γ ( r + 1 ) for r [ 1 , 10 2 ] .
Mathematics 12 00655 g007
Figure 8. The function U 3 ( r ) U 4 ( r ) Γ ( r + 1 ) for r [ 2 , 10 3 ] .
Figure 8. The function U 3 ( r ) U 4 ( r ) Γ ( r + 1 ) for r [ 2 , 10 3 ] .
Mathematics 12 00655 g008
Figure 9. The function U 1 ( r ) U 3 ( r ) Γ ( r + 1 ) for r [ 1 , 66 ] .
Figure 9. The function U 1 ( r ) U 3 ( r ) Γ ( r + 1 ) for r [ 1 , 66 ] .
Mathematics 12 00655 g009
Figure 10. The function U 2 ( r ) U 1 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Figure 10. The function U 2 ( r ) U 1 ( r ) Γ ( r + 1 ) for r [ 1 , 10 4 ] .
Mathematics 12 00655 g010
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Mahmoud, M.; Almuashi, H. Two Approximation Formulas for Gamma Function with Monotonic Remainders. Mathematics 2024, 12, 655. https://doi.org/10.3390/math12050655

AMA Style

Mahmoud M, Almuashi H. Two Approximation Formulas for Gamma Function with Monotonic Remainders. Mathematics. 2024; 12(5):655. https://doi.org/10.3390/math12050655

Chicago/Turabian Style

Mahmoud, Mansour, and Hanan Almuashi. 2024. "Two Approximation Formulas for Gamma Function with Monotonic Remainders" Mathematics 12, no. 5: 655. https://doi.org/10.3390/math12050655

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop