Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas
Abstract
:1. Introduction
1.1. Introduction to the Topics Covered in this Paper
- is bounded on each , for ;
- is continuous with respect to , Lipschitz continuous on bounded sets with respect to , and globally Lipschitz continuous with respect to and z;
- and .
1.2. Literature Review and Important Results
1.3. Research Aims and Objectives
1.4. Structure of the Article
1.5. Positioning of Our Results within the Relevant Field
2. Preliminaries
- 1 .
- ;
- 2 .
- and
3. Generalized Solution
4. Main Result
5. Auxiliary Results
6. Proof of Main Theorem
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bašić-Šiško, A.; Dražić, I. One-dimensional model and numerical solution to the viscous and heat-conducting reactive micropolar real gas flow and thermal explosion. Iran. J. Sci. Technol. Trans. Mech. Eng. 2022, 47, 19–39. [Google Scholar] [CrossRef]
- Lewicka, M.; Mucha, P. On temporal asymptotics for the pth power viscous reactive gas. Nonlinear Anal. Theory Methods Appl. 2004, 57, 951–969. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotný, A. Large time behaviour of flows of compressible, viscous, and heat conducting fluids. Math. Methods Appl. Sci. 2006, 29, 1237–1260. [Google Scholar] [CrossRef]
- Poland, J.; Kassoy, D. The induction period of a thermal explosion in a gas between infinite parallel plates. Combust. Flame 1983, 50, 259–274. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural’tseva, N.N. Linear and Quasilinear Equations of Parabolic Type; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Bašić-Šiško, A.; Dražić, I. Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions. J. Math. Anal. Appl. 2022, 509, 125988. [Google Scholar] [CrossRef]
- Asadi, H.; Javaherdeh, K.; Ramezani, S. Micropolar Fluid Model For Blood Flow Through A Stenosed Artery. Int. J. Appl. Mech. 2013, 5, 1350043. [Google Scholar] [CrossRef]
- Vardoulakis, I. Cosserat Continuum Mechanics: With Applications to Granular Media; Lecture Notes in Applied and Computational Mechanics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Eringen, A. Microcontinuum Field Theories: I. Foundations and Solids; Springer New York: New York, NY, USA, 2012. [Google Scholar]
- Saad, E.; Faltas, M. Thermophoresis of a spherical particle straddling the interface of a semi-infinite micropolar fluid. J. Mol. Liq. 2020, 312, 113289. [Google Scholar] [CrossRef]
- Yadav, P.; Verma, A. Analysis of immiscible Newtonian and non-Newtonian micropolar fluid flow through porous cylindrical pipe enclosing a cavity. Eur. Phys. J. Plus 2020, 135, 645. [Google Scholar] [CrossRef]
- Nawaz, M.; Elmoasry, A.; Alebraheem, J.; Sajjad Saif, R. Impact of monocity and hybridity of nano-structures on thermal performance of micropolar fluid with novel heat flux theory: The Cattaneo–Christov heat flux theory. J. Mater. Res. Technol. 2020, 9, 8618–8626. [Google Scholar] [CrossRef]
- Karvelas, E.G.; Tsiantis, A.; Papathanasiou, T.D. Effect of micropolar fluid properties on the hydraulic permeability of fibrous biomaterials. Comput. Methods Programs Biomed. 2020, 185, 105135. [Google Scholar] [CrossRef]
- Fatunmbi, E.O.; Ogunseye, H.A.; Sibanda, P. Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions. Int. Commun. Heat Mass Transf. 2020, 115, 104577. [Google Scholar] [CrossRef]
- Baidya, U.; Das, S.; Das, S. Analysis of misaligned hydrodynamic porous journal bearings in the steady-state condition with micropolar lubricant. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 234, 778–792. [Google Scholar] [CrossRef]
- Béjar-López, A.; Cunha, C.; Soler, J. Two-dimensional incompressible micropolar fluid models with singular initial data. Phys. D Nonlinear Phenom. 2022, 430, 133069. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, X. Regularity criteria for 3D generalized incompressible magneto-micropolar fluid equations. Appl. Math. Lett. 2022, 127, 107840. [Google Scholar] [CrossRef]
- Caggio, M. Inviscid incompressible limit for compressible micro-polar fluids. Nonlinear Anal. 2022, 216, 112695. [Google Scholar] [CrossRef]
- Tong, L.; Pan, R.; Tan, Z. Decay estimates of solutions to the compressible micropolar fluids system in R3. J. Differ. Equ. 2021, 293, 520–552. [Google Scholar] [CrossRef]
- Huang, B.; Liu, L.; Zhang, L. Global Dynamics of 3-D Compressible Micropolar Fluids with Vacuum and Large Oscillations. J. Math. Fluid Mech. 2021, 23, 6. [Google Scholar] [CrossRef]
- Huang, B.; Nečasová, Š.; Zhang, L. On the compressible micropolar fluids in a time-dependent domain. Ann. Mat. 2022, 201, 2733–2795. [Google Scholar] [CrossRef]
- Mujakovic, N. One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem. Glas. Mat. III Ser. 1998, 33, 71–91. [Google Scholar]
- Dražić, I. 3-D flow of a compressible viscous micropolar fluid model with spherical symmetry: A brief survey and recent progress. Rev. Math. Phys. 2018, 30, 1830001. [Google Scholar] [CrossRef]
- Dražić, I. Three-dimensional flow of a compressible viscous micropolar fluid with cylindrical symmetry: A global existence theorem. Math. Methods Appl. Sci. 2017, 40, 4785–4801. [Google Scholar] [CrossRef]
- Dražić, I.; Mujaković, N. Local existence of the generalized solution for three-dimensional compressible viscous flow of micropolar fluid with cylindrical symmetry. Bound. Value Probl. 2019, 2019, 16. [Google Scholar] [CrossRef]
- Dražić, I.; Mujaković, N.; Simčić, L. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution. Math. Anal. Appl. 2016, 438, 162–183. [Google Scholar] [CrossRef]
- Simčić, L. A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution. Math. Methods Appl. Sci. 2019, 42, 6358–6368. [Google Scholar] [CrossRef]
- Cui, H.; Yao, Z.-A. Asymptotic behavior of compressible p-th power Newtonian fluid with large initial data. J. Differ. Equ. 2015, 258, 919–953. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, L. Regularity and exponential stability of the pth Newtonian fluid in one space dimension. Math. Model. Methods Appl. Sci.-M3AS 2010, 20, 589–610. [Google Scholar] [CrossRef]
- Wang, T. One dimensional p-th power Newtonian fluid with temperature-dependent thermal conductivity. Commun. Pure Appl. Anal. 2016, 15, 477–494. [Google Scholar] [CrossRef]
- Wan, L.; Wang, T. Asymptotic behavior for the one-dimensional pth power Newtonian fluid in unbounded domains. Math. Methods Appl. Sci. 2015, 39, 1020–1025. [Google Scholar] [CrossRef]
- Watson, S.; Lewicka, M. Temporal asymptotics for the p’th power Newtonian fluid in one space dimension. Z. Angew. Math. Phys. 2003, 54, 633–651. [Google Scholar] [CrossRef]
- Yanagi, S. Asymptotic stability of the spherically symmetric solutions for a viscous polytropic gas in a field of external forces. Transp. Theory Stat. Phys. 2000, 29, 333–353. [Google Scholar] [CrossRef]
- Bašić-Šiško, A.; Dražić, I.; Simčić, L. One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions. Math. Comput. Simul. 2022, 195, 71–87. [Google Scholar] [CrossRef]
- Bašić-Šiško, A.; Dražić, I. Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions. Math. Methods Appl. Sci. 2021, 44, 4330–4341. [Google Scholar] [CrossRef]
- Bašić-Šiško, A.; Dražić, I. Global solution to a one-dimensional model of viscous and heat-conducting micropolar real gas flow. J. Math. Anal. Appl. 2021, 495, 124690. [Google Scholar] [CrossRef]
- Bebernes, J.; Bressan, A. Global a priori estimates for a viscous reactive gas. Proc. R. Soc. Edinb. Sect. A Math. 1985, 101, 321–333. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, L. Global Existence and Exponential Stability for the pth Power Viscous Reactive Gas. Nonlinear Anal.-Theory Methods Appl. 2010, 73, 2800–2818. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, L. Global Well-Posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems, 1st ed.; Frontiers in Mathematics; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar] [CrossRef]
- Bašić-Šiško, A.; Dražić, I. Global Existence Theorem of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas; Faculty of Engineering, University of Rijeka: Rijeka, Croatia, 2024; Unpublished work. [Google Scholar]
- Folland, G.B. Real Analysis: Modern Techniques and Their Applications; Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Beesack, P.R. On some Gronwall-type integral inequalities in n independent variables. J. Math. Anal. Appl. 1984, 100, 393–408. [Google Scholar] [CrossRef]
- Adams, R.; Fournier, J. Sobolev Spaces; Elsevier Science: Vancouver, BC, Canada, 2003. [Google Scholar]
- Antontsev, S.N.; Kazhikhov, A.V.; Monakhov, V.N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Volume 22; Studies in Mathematics and Its Applications; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bašić-Šiško, A.; Dražić, I. Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas. Mathematics 2024, 12, 717. https://doi.org/10.3390/math12050717
Bašić-Šiško A, Dražić I. Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas. Mathematics. 2024; 12(5):717. https://doi.org/10.3390/math12050717
Chicago/Turabian StyleBašić-Šiško, Angela, and Ivan Dražić. 2024. "Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas" Mathematics 12, no. 5: 717. https://doi.org/10.3390/math12050717
APA StyleBašić-Šiško, A., & Dražić, I. (2024). Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas. Mathematics, 12(5), 717. https://doi.org/10.3390/math12050717