5th-Order Multivariate Edgeworth Expansions for Parametric Estimates
Abstract
:1. Introduction and Summary
2. Foundations
3. Cumulant Coefficients for when
4. Cumulant Coefficients for when
5. Cumulant Coefficients for Univariate
6. An Extension to Theorem 1
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Some Comments on the References
References
- Withers, C.S.; Nadarajah, S. Chain rules for multivariate cumulant coefficients. Stat 2022, 11, e451. [Google Scholar] [CrossRef]
- Withers, C.S. The distribution and quantiles of a function of parameter estimates. Ann. Inst. Stat. Math. Ser. A 1982, 34, 55–68. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Tilted Edgeworth expansions for asymptotically normal vectors. Ann. Inst. Stat. Math. 2010, 62, 1113–1142. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Improved confidence regions based on Edgeworth expansions. Comput. Stat. Data Anal. 2012, 56, 4366–4380. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The dual multivariate Charlier and Edgeworth expansions. Stat. Probab. Lett. 2014, 87, 76–85. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Expansions about the gamma for the distribution and quantiles of a standard estimate. Methodol. Comput. Appl. Probab. 2014, 16, 693–713. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Edgeworth-Cornish-Fisher-Hill-Davis expansions for normal and non-normal limits via Bell polynomials. Stochastics Int. J. Probab. Stoch. Process. 2015, 87, 794–805. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Rao, R.R. Normal Approximation and Asymptotic Expansions; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Cai, T. One-sided confidence intervals in discrete distributions. J. Stat. Plan. Inference 2005, 131, 63–88. [Google Scholar]
- Barndoff-Nielsen, O.E.; Cox, D.R. Asymptotic Techniques for Use in Statistics; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Daniels, H.E. Saddlepoint approximations for estimating equations. Biometrika 1983, 70, 89–96. [Google Scholar] [CrossRef]
- Daniels, H.E. Tail probability expansions. Intern. Stat. Rev. 1987, 55, 37–48. [Google Scholar] [CrossRef]
- Withers, C.S. Asymptotic expansions for distributions and quantiles with power series cumulants. J. R. Stat. Soc. B 1984, 46, 389–396. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals. J. Nonparametr. Stat. 2008, 20, 751–768. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The bias and skewness of M-estimators in regression. Electron. J. Stat. 2010, 4, 1–14. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Channel capacity for MIMO systems with multiple frequencies and delay spread. Appl. Math. Inf. Sci. 2011, 5, 480–483. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Cornish-Fisher expansions for sample autocovariances and other functions of sample moments of linear processes. Braz. J. Probab. Stat. 2012, 26, 149–166. [Google Scholar] [CrossRef]
- James, G.S.; Mayne, A.J. Cumulants of functions of random variables. Sankhya A 1962, 24, 47–54. [Google Scholar]
- Withers, C.S. Accurate confidence intervals when nuisance parameters are present. Commun. Stat.—Theory Methods 1989, 18, 4229–4259. [Google Scholar] [CrossRef]
- Withers, C.S. Bias reduction by Taylor series. Commun. Stat.—Theory Methods 1987, 16, 2369–2383. [Google Scholar] [CrossRef]
- Withers, C.S. Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals. Ann. Stat. 1983, 11, 577–587. [Google Scholar] [CrossRef]
- Withers, C.S. Nonparametric confidence intervals for functions of several distributions. Ann. Inst. Stat. Math. Part A 1988, 40, 727–746. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Expansions for the distribution of M-estimates with applications to the multi-tone problem. Esiam—Probab. Stat. 2011, 15, 139–167. [Google Scholar] [CrossRef]
- Kakizawa, Y. Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers. Stat. Prob. Lett. 2016, 110, 162–168. [Google Scholar] [CrossRef]
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1992. [Google Scholar]
- Yang, J.J.; Trucco, E.M.; Buu, A. A hybrid method of the sequential Monte Carlo and the Edgeworth expansion for computation of very small p-values in permution tests. Stat. Methods Med. Res. 2019, 28, 2937–2951. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Cornish, E.A. The percentile points of distributions having known cumulants. Technometrics 1960, 2, 209–225. [Google Scholar] [CrossRef]
- Chebyshev, P. Sur deux théorèmes relatifs aux probabilités. Acta Math. 1890, 14, 305–315. [Google Scholar]
- Edgeworth, F.Y. The asymmetrical probability curve. Proc. R. Soc. Lond. 1894, 56, 271–272. [Google Scholar] [CrossRef]
- Charlier, C.V.L. Applications de la Theorie des Probabilites a l’Astronomie; Tome II, Les Applications de la Theorie des Probabilites Aux Sciences Mathematiques et Aux Science Physique; Borel, E., Ed.; Gauthier-Villars: Paris, France, 1931. [Google Scholar]
- Cramer, H. On the composition of elementary errors. Skand Aktuarietidskr 1928, 11, 13–74. [Google Scholar]
- Ibragimov, I.A. On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables. Teor. Verojatnost. Primenen 1966, 11, 632–655. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar]
- Stuart, A.; Ord, K. Kendall’s Advanced Theory of Statistics, 5th ed.; Griffin: London, UK, 1987; Volume 1. [Google Scholar]
- Bobkov, S.G. Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. Prob. Theory Relat. Fields 2018, 170, 229–262. [Google Scholar] [CrossRef]
- Velasco, C. Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean; Econometrics Discussion Paper; Suntory and Toyota International Centres for Economics and Related Discipline: London, UK, 2000. [Google Scholar]
- Ciginas, A.; Pumputis, D. Calibrated Edgeworth expansions of finite population L-statistics. Math. Popul. Stud. 2020, 27, 59–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, D. Edgeworth expansions for network moments. arXiv 2021. [Google Scholar] [CrossRef]
- Jirak, M. Edgeworth expansions for volatility models. Electron. J. Probab. 2023, 28, 171. [Google Scholar] [CrossRef]
- Gotze, F.; Hipp, C. Asymptotic expansions for sums of weakly dependent random vectors. Z. Wahrsch. Verw. Gebiete 1983, 64, 211–239. [Google Scholar] [CrossRef]
- Ibragimov, I.A.; Linnik, Y.V. Independent and Stationary Sequences of Random Variables; Wolters-Noordhoff: Groningen, The Netherlands, 1971. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Charlier and Edgeworth expansions for distributions and densities in terms of Bell polynomials. Probab. Math. Stat. 2009, 29, 271–280. [Google Scholar]
- Cornish, E.A.; Fisher, R.A. Moments and cumulants in the specification of distributions. Rev. l’Inst. Int. Stat. 1937, 5, 307–322. [Google Scholar] [CrossRef]
- Hill, G.W.; Davis, A.W. Generalised asymptotic expansions of Cornish-Fisher type. Ann. Math. Stat. 1968, 39, 1264–1273. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Transformations of multivariate Edgeworth-type expansions. Stat. Methodol. 2012, 9, 423–439. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The distribution of the amplitude and phase of the mean of a sample of complex random variables. J. Multivar. Anal. 2013, 113, 128–152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Withers, C.S. 5th-Order Multivariate Edgeworth Expansions for Parametric Estimates. Mathematics 2024, 12, 905. https://doi.org/10.3390/math12060905
Withers CS. 5th-Order Multivariate Edgeworth Expansions for Parametric Estimates. Mathematics. 2024; 12(6):905. https://doi.org/10.3390/math12060905
Chicago/Turabian StyleWithers, C. S. 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates" Mathematics 12, no. 6: 905. https://doi.org/10.3390/math12060905