Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions
Abstract
:1. Introduction
- (anti-periodic),
- (separated),
- (non-separated), etc.
2. Preliminaries
- (iii)
- (iv)
- .
3. Main Results
- There exists such that
- There exist , such that is nondecreasing and for all and , we have
- There exists such that
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef]
- Tarasov, V.E. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 1–4. [Google Scholar] [CrossRef]
- Cresson, J.; Szafrańska, A. Comments on various extensions of the Riemann-Liouville fractional derivatives: About the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 104903. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On Fractional geometry of curves. Fractal Fract. 2021, 5, 161. [Google Scholar] [CrossRef]
- Lazopoulos, K.A. Stability criteria and Λ-fractional Mechanics. Fractal Fract. 2023, 7, 248. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Dorrego, G.A. An alternative definition for the k-Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
- Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
- Luo, D.; Zhu, Q.; Luo, Z. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 2021, 122, 107549. [Google Scholar] [CrossRef]
- Ding, K.; Zhu, Q. Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications. Nonlinear Dyn. 2020, 100, 2595–2608. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Zhu, Q. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
- Nuchpong, C.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions. Adv. Differ. Equ. 2021, 2021, 268. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. (k, ψ)-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential equations and inclusions. Mathematics 2022, 10, 2615. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Cuntavepanit, A.; Tariboon, J. Hilfer proportional nonlocal fractional integro-multi-point boundary value problems. Open Math. 2023, 21, 20230137. [Google Scholar] [CrossRef]
- Kamsrisuk, N.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. Existence results for a coupled system of (k, φ)-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Math. 2023, 8, 4079–4097. [Google Scholar] [CrossRef]
- Almeida, R.A. Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Mallah, I.; Ahmed, I.; Akgul, A.; Jarad, F.; Alha, S. On ϑ-Hilfer generalized proportional fractional operators. AIMS Math. 2021, 7, 82–103. [Google Scholar] [CrossRef]
- Carothers, N.L. Real Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Tariboon, J. Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions. Mathematics 2024, 12, 1361. https://doi.org/10.3390/math12091361
Samadi A, Ntouyas SK, Tariboon J. Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions. Mathematics. 2024; 12(9):1361. https://doi.org/10.3390/math12091361
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions" Mathematics 12, no. 9: 1361. https://doi.org/10.3390/math12091361
APA StyleSamadi, A., Ntouyas, S. K., & Tariboon, J. (2024). Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions. Mathematics, 12(9), 1361. https://doi.org/10.3390/math12091361