Enhancing Portfolio Allocation: A Random Matrix Theory Perspective
Abstract
:1. Introduction
2. Random Matrix Theory
2.1. Filtering Covariance by RMT
2.2. Data Preprocessing: Hilbert Transformation
3. Portfolio Selection Models
3.1. Traditional Global Minimum Variance Portfolio
3.2. Asset Allocations through Network-Based Clustering Coefficients
4. Empirical Protocol and Performance Analysis
4.1. Diversification and Transaction Costs: In-Sample Analysis
4.2. Performance Measurements: Out-of-Sample Analysis
4.3. Data Description and Empirical Results
5. Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RMT | Random Matrix Theory |
GMV | Global Minimum Variance |
HI | Herfindahl Index |
OR | Omega Ratio |
SR | Sharp Ratio |
CC | Clustering Coefficient Approach |
CC-RMT | Clustering Coefficient via the Random Matrix Theory Approach |
Appendix A
IBEX-P | DJI-P | SP5ENRS-P | NDX-P |
---|---|---|---|
IBE SM Equity | UNH UN Equity | OXY UN Equity | AMZN UW Equity |
SAN SM Equity | MSFT UQ Equity | OKE UN Equity | CPRT UW Equity |
BBVA SM Equity | GS UN Equity | CVX UN Equity | IDXX UW Equity |
TEF SM Equity | HD UN Equity | COP UN Equity | CSGP UW Equity |
REP SM Equity | AMGN UQ Equity | XOM UN Equity | CSCO UW Equity |
ACS SM Equity | MCD UN Equity | PXD UN Equity | INTC UW Equity |
RED SM Equity | CAT UN Equity | VLO UN Equity | MSFT UW Equity |
ELE SM Equity | BA UN Equity | SLB UN Equity | NVDA UW Equity |
BKT SM Equity | TRV UN Equity | HES UN Equity | CTSH UW Equity |
ANA SM Equity | AAPL UQ Equity | MRO UN Equity | BKNG UW Equity |
NTGY SM Equity | AXP UN Equity | WMB UN Equity | ADBE UW Equity |
MAP SM Equity | JPM UN Equity | CTRA UN Equity | ODFL UW Equity |
IDR SM Equity | IBM UN Equity | EOG UN Equity | AMGN UW Equity |
ACX SM Equity | WMT UN Equity | EQT UN Equity | AAPL UW Equity |
SCYR SM Equity | JNJ UN Equity | HAL UN Equity | ADSK UW Equity |
COL SM Equity | PG UN Equity | CTAS UW Equity | |
MEL SM Equity | MRK UN Equity | CMCSA UW Equity | |
MMM UN Equity | KLAC UW Equity | ||
NKE UN Equity | PCAR UW Equity | ||
DIS UN Equity | COST UW Equity | ||
KO UN Equity | REGN UW Equity | ||
CSCO UQ Equity | AMAT UW Equity | ||
INTC UQ Equity | SNPS UW Equity | ||
VZ UN Equity | EA UW Equity | ||
FAST UW Equity | |||
ANSS UW Equity | |||
GILD UW Equity | |||
BIIB UW Equity | |||
LRCX UW Equity | |||
TTWO UW Equity | |||
VRTX UW Equity | |||
PAYX UW Equity | |||
QCOM UW Equity | |||
ROST UW Equity | |||
SBUX UW Equity | |||
INTU UW Equity | |||
MCHP UW Equity | |||
MNST UW Equity | |||
ORLY UW Equity | |||
ASML UW Equity | |||
SIRI UW Equity | |||
DLTR UW Equity |
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Chopra, V.K.; Ziemba, W.T. The effect of errors in means, variances, and covariances on optimal portfolio choice. In Handbook of the Fundamentals of Financial Decision Making: Part I; World Scientific: Singapore, 2013; pp. 365–373. [Google Scholar]
- Jobson, J.D.; Korkie, B. Estimation for Markowitz efficient portfolios. J. Am. Stat. Assoc. 1980, 75, 544–554. [Google Scholar] [CrossRef]
- Merton, R.C. On estimating the expected return on the market: An exploratory investigation. J. Financ. Econ. 1980, 8, 323–361. [Google Scholar] [CrossRef]
- Chung, M.; Lee, Y.; Kim, J.H.; Kim, W.C.; Fabozzi, F.J. The effects of errors in means, variances, and correlations on the mean-variance framework. Quant. Financ. 2022, 22, 1893–1903. [Google Scholar] [CrossRef]
- Kolm, P.N.; Tütüncü, R.; Fabozzi, F.J. 60 years of portfolio optimization: Practical challenges and current trends. Eur. J. Oper. Res. 2014, 234, 356–371. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Robust performance hypothesis testing with the Sharpe ratio. J. Empir. Financ. 2008, 15, 850–859. [Google Scholar] [CrossRef]
- Martellini, L.; Ziemann, V. Improved estimates of higher-order comoments and implications for portfolio selection. Rev. Financ. Stud. 2009, 23, 1467–1502. [Google Scholar] [CrossRef]
- Hitaj, A.; Zambruno, G. Are Smart Beta strategies suitable for hedge fund portfolios? Rev. Financ. Econ. 2016, 29, 37–51. [Google Scholar] [CrossRef]
- Mantegna, R.N. Hierarchical structure in financial markets. Eur. Phys. J.-Condens. Matter Complex Syst. 1999, 11, 193–197. [Google Scholar] [CrossRef]
- Onnela, J.P.; Kaski, K.; Kertész, J. Clustering and information in correlation based financial networks. Eur. Phys. J. B 2004, 38, 353–362. [Google Scholar] [CrossRef]
- Ricca, F.; Scozzari, A. Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification. Eur. J. Oper. Res. 2024, 312, 700–717. [Google Scholar] [CrossRef]
- Puerto, J.; Rodríguez-Madrena, M.; Scozzari, A. Clustering and portfolio selection problems: A unified framework. Comput. Oper. Res. 2020, 117, 104891. [Google Scholar] [CrossRef]
- Clemente, G.P.; Grassi, R.; Hitaj, A. Smart network based portfolios. Ann. Oper. Res. 2022, 316, 1519–1541. [Google Scholar] [CrossRef] [PubMed]
- Clemente, G.P.; Grassi, R.; Hitaj, A. Asset allocation: New evidence through network approaches. Ann. Oper. Res. 2021, 299, 61–80. [Google Scholar] [CrossRef]
- Wigner, E.P. On a class of analytic functions from the quantum theory of collisions. In The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers; Springer: Berlin/Heidelberg, Germany, 1993; pp. 409–440. [Google Scholar]
- Laloux, L.; Cizeau, P.; Potters, M.; Bouchaud, J.P. Random matrix theory and financial correlations. Int. J. Theor. Appl. Financ. 2000, 3, 391–397. [Google Scholar] [CrossRef]
- Bouchaud, J.P.; Potters, M. Financial applications of random matrix theory: A short review. In The Oxford Handbook of Random Matrix Theory; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L.A.N.; Guhr, T.; Stanley, H.E. Random matrix approach to cross correlations in financial data. Phys. Rev. E 2002, 65, 066126. [Google Scholar] [CrossRef]
- Pafka, S.; Kondor, I. Estimated correlation matrices and portfolio optimization. Phys. A Stat. Mech. Its Appl. 2004, 343, 623–634. [Google Scholar] [CrossRef]
- Horel, J.D. Complex principal component analysis: Theory and examples. J. Appl. Meteorol. Climatol. 1984, 23, 1660–1673. [Google Scholar] [CrossRef]
- Guerini, M.; Vanni, F.; Napoletano, M. E pluribus, quaedam. Gross domestic product out of a dashboard of indicators. Ital. Econ. J. 2024, 1–16. [Google Scholar] [CrossRef]
- Aoyama, H. Macro-Econophysics: New Studies on Economic Networks and Synchronization; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2017. [Google Scholar]
- Wilinski, M.; Ikeda, Y.; Aoyama, H. Complex correlation approach for high frequency financial data. J. Stat. Mech. Theory Exp. 2018, 2018, 023405. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Hatanaka, M. Spectral Analysis of Economic Time Series.(PSME-1); Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Rasmusson, E.M.; Arkin, P.A.; Chen, W.Y.; Jalickee, J.B. Biennial variations in surface temperature over the United States as revealed by singular decomposition. Mon. Weather. Rev. 1981, 109, 587–598. [Google Scholar] [CrossRef]
- Pastur, L.; Martchenko, V. The distribution of eigenvalues in certain sets of random matrices. Math. USSR-Sb. 1967, 1, 457–483. [Google Scholar]
- Paul, D.; Aue, A. Random matrix theory in statistics: A review. J. Stat. Plan. Inference 2014, 150, 1–29. [Google Scholar] [CrossRef]
- Bai, Z.; Silverstein, J.W. Spectral Analysis of Large Dimensional Random Matrices; Springer: Berlin/Heidelberg, Germany, 2010; Volume 20. [Google Scholar]
- Biroli, G.; Bouchaud, J.P.; Potters, M. On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 2007, 78, 10001. [Google Scholar] [CrossRef]
- Laloux, L.; Cizeau, P.; Bouchaud, J.P.; Potters, M. Noise dressing of financial correlation matrices. Phys. Rev. Lett. 1999, 83, 1467. [Google Scholar] [CrossRef]
- Poularikas, A.D.; Grigoryan, A.M. Transforms and Applications Handbook; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440. [Google Scholar] [CrossRef] [PubMed]
- Keating, C.; Shadwick, W.F. A Universal Performance Measure; Technical Report; The Finance Development Center: London, UK, 2002. [Google Scholar]
- Leung, M.F.; Wang, J. Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2825–2836. [Google Scholar] [CrossRef]
- Leung, M.F.; Wang, J. Cardinality-constrained portfolio selection based on collaborative neurodynamic optimization. Neural Netw. 2022, 145, 68–79. [Google Scholar] [CrossRef]
RW 6 Months In-Sample, 1 Month Out-of-Sample | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NDX | S5ENRS | |||||||||||
Skewness | Kurtosis | Skewness | Kurtosis | |||||||||
Sample | 0.150 | 0.158 | −0.388 | 12.404 | 0.953 | 1.193 | −0.020 | 0.278 | −2.044 | 54.406 | – | 0.985 |
Shrinkage | 0.156 | 0.158 | −0.421 | 13.869 | 0.989 | 1.203 | −0.023 | 0.278 | −2.027 | 53.787 | – | 0.983 |
CC | 0.170 | 0.168 | −0.432 | 15.126 | 1.014 | 1.212 | −0.028 | 0.286 | −2.182 | 58.677 | – | 0.980 |
CC-RMT | 0.173 | 0.169 | −0.549 | 19.508 | 1.027 | 1.217 | −0.006 | 0.278 | −1.004 | 26.446 | – | 0.996 |
DJI | IBEX | |||||||||||
Sample | 0.069 | 0.135 | −0.097 | 14.955 | 0.511 | 1.103 | 0.011 | 0.171 | −2.202 | 30.704 | 0.065 | 1.012 |
Shrinkage | 0.061 | 0.135 | −0.109 | 15.777 | 0.452 | 1.090 | 0.014 | 0.170 | −2.233 | 30.384 | 0.085 | 1.016 |
CC | 0.036 | 0.140 | −0.010 | 15.197 | 0.260 | 1.051 | 0.015 | 0.178 | −2.176 | 30.847 | 0.082 | 1.016 |
CC-RMT | 0.075 | 0.146 | −0.435 | 25.338 | 0.514 | 1.108 | 0.021 | 0.174 | −1.697 | 24.944 | 0.118 | 1.022 |
RW 12 Months In-Sample, 1 Month Out-of-Sample | ||||||||||||
NDX | S5ENRS | |||||||||||
Skewness | Kurtosis | Skewness | Kurtosis | |||||||||
Sample | 0.138 | 0.162 | −0.462 | 15.083 | 0.852 | 1.173 | 0.003 | 0.273 | −1.605 | 40.578 | 0.009 | 1.002 |
Shrinkage | 0.137 | 0.162 | −0.443 | 15.292 | 0.846 | 1.173 | 0.000 | 0.274 | −1.623 | 40.714 | 0.001 | 1.000 |
CC | 0.138 | 0.174 | −0.435 | 18.384 | 0.798 | 1.165 | 0.000 | 0.277 | −1.562 | 38.124 | 0.001 | 1.000 |
CC-RMT | 0.149 | 0.175 | −0.550 | 21.857 | 0.854 | 1.179 | 0.031 | 0.284 | −0.853 | 24.782 | 0.110 | 1.021 |
DJI | IBEX | |||||||||||
Sample | 0.056 | 0.140 | −0.348 | 17.637 | 0.403 | 1.081 | 0.009 | 0.168 | −1.926 | 27.381 | 0.056 | 1.010 |
Shrinkage | 0.055 | 0.139 | −0.249 | 16.768 | 0.393 | 1.079 | 0.010 | 0.167 | −1.966 | 26.984 | 0.059 | 1.011 |
CM | 0.036 | 0.142 | −0.234 | 14.925 | 0.256 | 1.050 | 0.011 | 0.176 | −1.703 | 24.097 | 0.060 | 1.011 |
CM RMT | 0.052 | 0.150 | -0.467 | 26.307 | 0.349 | 1.073 | 0.017 | 0.179 | −1.499 | 24.244 | 0.097 | 1.018 |
RW 24 Months In-Sample, 1 Month Out-of-Sample | ||||||||||||
NDX | S5ENRS | |||||||||||
Skewness | Kurtosis | Skewness | Kurtosis | |||||||||
Sample | 0.144 | 0.168 | −0.515 | 18.621 | 0.857 | 1.178 | 0.038 | 0.274 | −0.903 | 24.810 | 0.139 | 1.028 |
Shrinkage | 0.143 | 0.168 | −0.544 | 19.674 | 0.851 | 1.178 | 0.037 | 0.275 | −0.926 | 25.209 | 0.134 | 1.027 |
CC | 0.152 | 0.181 | −0.428 | 22.929 | 0.840 | 1.179 | 0.032 | 0.284 | −1.059 | 26.698 | 0.111 | 1.022 |
CC-RMT | 0.156 | 0.179 | −0.557 | 21.381 | 0.868 | 1.184 | 0.071 | 0.294 | −0.814 | 24.310 | 0.241 | 1.048 |
DJI | IBEX | |||||||||||
Sample | 0.061 | 0.142 | −0.465 | 20.465 | 0.429 | 1.089 | −0.013 | 0.167 | −1.924 | 27.775 | – | 0.986 |
Shrinkage | 0.056 | 0.142 | −0.463 | 20.226 | 0.392 | 1.081 | −0.014 | 0.166 | −1.982 | 27.653 | – | 0.985 |
CC | 0.031 | 0.145 | −0.487 | 17.511 | 0.216 | 1.043 | 0.006 | 0.175 | −1.676 | 23.275 | 0.032 | 1.006 |
CC-RMT | 0.071 | 0.153 | −0.457 | 28.351 | 0.467 | 1.101 | 0.037 | 0.182 | −1.552 | 25.414 | 0.203 | 1.039 |
NDX | S5ENRS | |||||||||||
Skewness | Kurtosis | Skewness | Kurtosis | |||||||||
Sample | 0.148 | 0.170 | −0.425 | 18.565 | 0.871 | 1.183 | 0.055 | 0.278 | −0.844 | 23.960 | 0.198 | 1.040 |
Shrinkage | 0.148 | 0.171 | −0.448 | 19.505 | 0.862 | 1.181 | 0.054 | 0.279 | −0.868 | 24.361 | 0.194 | 1.039 |
CM | 0.159 | 0.183 | −0.327 | 22.713 | 0.867 | 1.187 | 0.048 | 0.289 | −0.994 | 25.798 | 0.166 | 1.034 |
CM RMT | 0.153 | 0.175 | −0.465 | 21.145 | 0.873 | 1.177 | 0.080 | 0.299 | −0.780 | 23.468 | 0.267 | 1.053 |
DJI | IBEX | |||||||||||
Sample | 0.057 | 0.144 | −0.453 | 20.131 | 0.392 | 1.082 | −0.016 | 0.168 | −1.882 | 27.501 | – | 0.982 |
Shrinkage | 0.051 | 0.144 | −0.436 | 19.930 | 0.356 | 1.074 | −0.015 | 0.169 | −1.876 | 26.742 | – | 0.983 |
CM | 0.026 | 0.147 | −0.470 | 17.269 | 0.176 | 1.035 | 0.005 | 0.177 | −1.624 | 22.751 | 0.026 | 1.005 |
CM RMT | 0.076 | 0.155 | −0.394 | 27.803 | 0.489 | 1.107 | 0.038 | 0.182 | −1.548 | 25.313 | 0.211 | 1.041 |
RW 6 Months In-Sample and 1 Month Out-of-Sample | ||||||||
---|---|---|---|---|---|---|---|---|
Average Turnover | Average Modified Herfindahl | |||||||
NDX | S5ENRS | DJI | IBEX | NDX | S5ENRS | DJI | IBEX | |
Sample | 0.453 | 0.268 | 0.407 | 0.384 | 0.128 | 0.358 | 0.157 | 0.226 |
Shrinkage | 0.413 | 0.255 | 0.347 | 0.344 | 0.138 | 0.372 | 0.156 | 0.207 |
CC | 0.473 | 0.282 | 0.369 | 0.391 | 0.221 | 0.519 | 0.256 | 0.320 |
CC-RMT | 0.446 | 0.197 | 0.289 | 0.161 | 0.102 | 0.115 | 0.067 | 0.042 |
RW 12 Months In-Sample and 1 Month Out-of-Sample | ||||||||
Average Turnover | Average Modified Herfindahl | |||||||
NDX | S5ENRS | DJI | IBEX | NDX | S5ENRS | DJI | IBEX | |
Sample | 0.266 | 0.140 | 0.226 | 0.220 | 0.120 | 0.366 | 0.148 | 0.192 |
Shrinkage | 0.247 | 0.138 | 0.197 | 0.197 | 0.131 | 0.374 | 0.151 | 0.180 |
CC | 0.285 | 0.160 | 0.219 | 0.215 | 0.221 | 0.532 | 0.242 | 0.277 |
CC-RMT | 0.287 | 0.105 | 0.220 | 0.112 | 0.102 | 0.117 | 0.070 | 0.035 |
RW 24 Months In-Sample and 1 Month Out-of-Sample | ||||||||
Average Turnover | Average Modified Herfindahl | |||||||
NDX | S5ENRS | DJI | IBEX | NDX | S5ENRS | DJI | IBEX | |
Sample | 0.135 | 0.084 | 0.120 | 0.119 | 0.115 | 0.364 | 0.139 | 0.174 |
Shrinkage | 0.130 | 0.084 | 0.109 | 0.111 | 0.123 | 0.370 | 0.142 | 0.164 |
CC | 0.168 | 0.095 | 0.120 | 0.122 | 0.220 | 0.536 | 0.222 | 0.261 |
CC-RMT | 0.190 | 0.065 | 0.128 | 0.026 | 0.102 | 0.114 | 0.070 | 0.012 |
RW 24 Months In-Sample and 2 Months Out-of-Sample | ||||||||
Average Turnover | Average Modified Herfindahl | |||||||
NDX | S5ENRS | DJI | IBEX | NDX | S5ENRS | DJI | IBEX | |
Sample | 0.207 | 0.146 | 0.186 | 0.194 | 0.115 | 0.359 | 0.140 | 0.175 |
Shrinkage | 0.202 | 0.147 | 0.170 | 0.186 | 0.124 | 0.366 | 0.143 | 0.166 |
CC | 0.258 | 0.157 | 0.189 | 0.191 | 0.222 | 0.533 | 0.222 | 0.262 |
CC-RMT | 0.266 | 0.105 | 0.183 | 0.045 | 0.102 | 0.109 | 0.073 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanni, F.; Hitaj, A.; Mastrogiacomo, E. Enhancing Portfolio Allocation: A Random Matrix Theory Perspective. Mathematics 2024, 12, 1389. https://doi.org/10.3390/math12091389
Vanni F, Hitaj A, Mastrogiacomo E. Enhancing Portfolio Allocation: A Random Matrix Theory Perspective. Mathematics. 2024; 12(9):1389. https://doi.org/10.3390/math12091389
Chicago/Turabian StyleVanni, Fabio, Asmerilda Hitaj, and Elisa Mastrogiacomo. 2024. "Enhancing Portfolio Allocation: A Random Matrix Theory Perspective" Mathematics 12, no. 9: 1389. https://doi.org/10.3390/math12091389
APA StyleVanni, F., Hitaj, A., & Mastrogiacomo, E. (2024). Enhancing Portfolio Allocation: A Random Matrix Theory Perspective. Mathematics, 12(9), 1389. https://doi.org/10.3390/math12091389