Learning the Hybrid Nonlocal Self-Similarity Prior for Image Restoration
Abstract
:1. Introduction
- We develop a flexible yet simple approach to learn the HNSS prior from both internal degraded and external natural image sets.
- An HNSS prior-based structural sparse representation (HNSS-SSR) model with adaptive regularization parameters is formulated for image restoration.
- A general and efficient image restoration algorithm is developed by employing an alternating minimization strategy to solve the resulting image restoration problem.
- Extensive experimental results indicate that our proposed HNSS-SSR model exceeds many existing competition algorithms in terms of quantitative and qualitative quality.
2. Learning the Hybrid Nonlocal Self-Similarity Prior
2.1. Learning the Internal NSS Prior from a Degraded Image
2.2. Learning the External NSS Prior from a Natural Image Corpus
2.3. Learning the Hybrid NSS Prior for Patch Groups
3. Image Restoration via the Hybrid NSS Prior
3.1. HNSS Prior-Based Structural Sparse Representation
3.2. Image Restoration
3.2.1. Solving the Sub-Problem
3.2.2. Solving the x Sub-Problem
Algorithm 1 HNSS-SSR-based Image Restoration |
Input: Degraded image , measurement matrix , and external NSS prior GMM model Output: The restored image .
|
4. Experimental Results
4.1. Image Denoising
4.2. Image Deblurring
4.3. Computational Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zha, Z.; Zhang, X.; Wang, Q.; Bai, Y.; Chen, Y.; Tang, L.; Liu, X. Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior. Neurocomputing 2018, 275, 2294–2306. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, H.; Liang, L.; Xie, G.; Zhang, Y.; Liu, D. Rank minimization via adaptive hybrid norm for image restoration. Signal Process. 2023, 206, 108926. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, H.; Liang, L. Joint group dictionary-based structural sparse representation for image restoration. Digit. Signal Process. 2023, 137, 104029. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, D.; Gao, W. Group-based sparse representation for image restoration. IEEE Trans. Image Process. 2014, 23, 3336–3351. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C.; Kot, A.C. A hybrid structural sparsification error model for image restoration. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 4451–4465. [Google Scholar] [CrossRef] [PubMed]
- Papyan, V.; Elad, M. Multi-scale patch-based image restoration. IEEE Trans. Image Process. 2016, 25, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Liu, H.; Liang, L.; Wang, W.; Liu, D. Image restoration via joint low-rank and external nonlocal self-similarity prior. Signal Process. 2024, 215, 109284. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef]
- Mairal, J.; Elad, M.; Sapiro, G. Sparse representation for color image restoration. IEEE Trans. Image Process. 2007, 17, 53–69. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 2011, 20, 1838–1857. [Google Scholar] [CrossRef] [PubMed]
- Gai, S. Theory of reduced biquaternion sparse representation and its applications. Expert Syst. Appl. 2023, 213, 119245. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 2013, 22, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Yu, G.; Sapiro, G.; Mallat, S. Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 2012, 21, 2481–2499. [Google Scholar] [PubMed]
- Colak, O.; Eksioglu, E.M. On the fly image denoising using patch ordering. Expert Syst. Appl. 2022, 190, 116192. [Google Scholar] [CrossRef]
- Burger, H.C.; Schuler, C.J.; Harmeling, S. Image denoising: Can plain neural networks compete with BM3D? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2392–2399. [Google Scholar]
- Wang, J.; Wang, Z.; Yang, A. Iterative dual CNNs for image deblurring. Mathematics 2022, 10, 3891. [Google Scholar] [CrossRef]
- Chen, Y.; Pock, T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Zuo, W.; Zhang, L.; Van Gool, L.; Timofte, R. Plug-and-play image restoration with deep denoiser prior. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6360–6376. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Liu, X. Deep Successive Convex Approximation for Image Super-Resolution. Mathematics 2023, 11, 651. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, H.; Liang, L. Image restoration via exponential scale mixture-based simultaneous sparse prior. IET Image Process. 2022, 16, 3268–3283. [Google Scholar] [CrossRef]
- Zha, Z.; Yuan, X.; Zhou, J.; Zhu, C.; Wen, B. Image restoration via simultaneous nonlocal self-similarity priors. IEEE Trans. Image Process. 2020, 29, 8561–8576. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.; Yuan, X.; Wen, B.; Zhang, J.; Zhou, J.; Zhu, C. Simultaneous nonlocal self-similarity prior for image denoising. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1119–1123. [Google Scholar]
- Wen, B.; Li, Y.; Bresler, Y. Image recovery via transform learning and low-rank modeling: The power of complementary regularizers. IEEE Trans. Image Process. 2020, 29, 5310–5323. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Xu, J.; Zhang, L.; Zuo, W.; Zhang, D.; Feng, X. Patch group based nonlocal self-similarity prior learning for image denoising. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 244–252. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xu, J.; Liu, M.; Liu, G.; Liu, L.; Zhu, F.; Shao, L. NLH: A blind pixel-level non-local method for real-world image denoising. IEEE Trans. Image Process. 2020, 29, 5121–5135. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar]
- Dong, W.; Shi, G.; Ma, Y.; Li, X. Image restoration via simultaneous sparse coding: Where structured sparsity meets gaussian scale mixture. Int. J. Comput. Vis. 2015, 114, 217–232. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, H.; Liang, L.; Wang, W.; Liu, D. A hybrid structural sparse model for image restoration. Opt. Laser Technol. 2022, 171, 110401. [Google Scholar] [CrossRef]
- Ou, Y.; Swamy, M.; Luo, J.; Li, B. Single image denoising via multi-scale weighted group sparse coding. Signal Process. 2022, 200, 108650. [Google Scholar] [CrossRef]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhu, C. Group sparsity residual constraint with non-local priors for image restoration. IEEE Trans. Image Process. 2020, 29, 8960–8975. [Google Scholar] [CrossRef]
- Zha, Z.; Yuan, X.; Wen, B.; Zhang, J.; Zhou, J.; Zhu, C. Image restoration using joint patch-group-based sparse representation. IEEE Trans. Image Process. 2020, 29, 7735–7750. [Google Scholar] [CrossRef]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C. Image restoration via reconciliation of group sparsity and low-rank models. IEEE Trans. Image Process. 2021, 30, 5223–5238. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C.; Kot, A.C. Low-rankness guided group sparse representation for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7593–7607. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Li, X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Image Process. 2012, 22, 700–711. [Google Scholar] [CrossRef]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar] [CrossRef]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhang, J.; Zhu, C. From rank estimation to rank approximation: Rank residual constraint for image restoration. IEEE Trans. Image Process. 2019, 29, 3254–3269. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Wang, Q.W.; Song, G.J.; Li, T. Quaternion matrix factorization for low-rank quaternion matrix completion. Mathematics 2023, 11, 2144. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Zheng, J.; Shen, L.; Jiang, Q.; Lu, J. Nonlocal low-rank regularized two-phase approach for mixed noise removal. Inverse Probl. 2021, 37, 085001. [Google Scholar] [CrossRef]
- Lu, J.; Xu, C.; Hu, Z.; Liu, X.; Jiang, Q.; Meng, D.; Lin, Z. A new nonlocal low-rank regularization method with applications to magnetic resonance image denoising. Inverse Probl. 2022, 38, 065012. [Google Scholar] [CrossRef]
- Li, H.; Jia, X.; Zhang, L. Clustering based content and color adaptive tone mapping. Comput. Vis. Image Underst. 2018, 168, 37–49. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Lu, J.; Tan, S. Group sparsity mixture model and its application on image denoising. IEEE Trans. Image Process. 2022, 31, 5677–5690. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Zhang, D. External prior guided internal prior learning for real-world noisy image denoising. IEEE Trans. Image Process. 2018, 27, 2996–3010. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Sun, X.; Yang, J.; Wu, F. CID: Combined image denoising in spatial and frequency domains using Web images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Mandi, India, 16–19 December 2014; pp. 2933–2940. [Google Scholar]
- Liu, J.; Yang, W.; Zhang, X.; Guo, Z. Retrieval compensated group structured sparsity for image super-resolution. IEEE Trans. Multimed. 2017, 19, 302–316. [Google Scholar] [CrossRef]
- Zoran, D.; Weiss, Y. Natural images, Gaussian mixtures and dead leaves. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; Volume 25. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar]
- Niknejad, M.; Rabbani, H.; Babaie-Zadeh, M. Image restoration using Gaussian mixture models with spatially constrained patch clustering. IEEE Trans. Image Process. 2015, 24, 3624–3636. [Google Scholar] [CrossRef]
- Wu, C.J. On the convergence properties of the EM algorithm. Ann. Stat. 1983, 11, 95–103. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 2005, 4, 460–489. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Chen, M.; Pang, T.; Ji, H. Self2self with dropout: Learning self-supervised denoising from single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1890–1898. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image restoration by sparse 3D transform-domain collaborative filtering. In Proceedings of the Image Processing: Algorithms and Systems VI, San Jose, CA, USA, 28–29 January 2008; pp. 62–73. [Google Scholar]
- Zhang, J.; Zhao, D.; Xiong, R.; Ma, S.; Gao, W. Image restoration using joint statistical modeling in a space-transform domain. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 915–928. [Google Scholar] [CrossRef]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the Curves and Surfaces: 7th International Conference, Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Romano, Y.; Elad, M.; Milanfar, P. The little engine that could: Regularization by denoising (RED). SIAM J. Imaging Sci. 2017, 10, 1804–1844. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.T.; Zhou, J.; Zhu, C. Triply complementary priors for image restoration. IEEE Trans. Image Process. 2021, 30, 5819–5834. [Google Scholar] [CrossRef] [PubMed]
Methods | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR |
Bear | 28.89 | 28.76 | 29.01 | 28.78 | 28.89 | 28.96 | 29.09 | 26.82 | 26.71 | 26.81 | 26.67 | 26.74 | 26.77 | 26.84 |
Bike | 25.91 | 25.94 | 26.11 | 25.91 | 26.11 | 26.06 | 26.42 | 23.00 | 23.05 | 23.39 | 23.23 | 23.36 | 23.39 | 23.57 |
Buddhist | 31.87 | 31.45 | 31.82 | 31.54 | 31.81 | 31.64 | 31.82 | 29.48 | 29.09 | 29.36 | 29.05 | 29.43 | 29.19 | 29.38 |
Butterfly | 27.55 | 27.94 | 27.74 | 28.23 | 28.27 | 28.18 | 28.59 | 24.79 | 25.05 | 25.21 | 25.64 | 25.59 | 25.51 | 25.83 |
Cameraman | 28.64 | 28.58 | 28.54 | 28.20 | 28.43 | 28.58 | 28.75 | 26.13 | 26.15 | 26.46 | 26.30 | 26.27 | 26.39 | 26.48 |
Corn | 26.59 | 26.83 | 26.72 | 27.15 | 27.02 | 26.91 | 27.35 | 23.76 | 23.77 | 23.77 | 24.39 | 24.22 | 24.20 | 24.54 |
Cowboy | 27.61 | 27.56 | 27.66 | 27.65 | 27.73 | 27.67 | 27.92 | 24.75 | 24.74 | 25.05 | 25.02 | 25.03 | 25.08 | 25.21 |
Flower | 27.97 | 27.91 | 28.11 | 28.10 | 28.12 | 28.14 | 28.47 | 25.49 | 25.32 | 25.64 | 25.63 | 25.72 | 25.83 | 26.00 |
Flowers | 27.84 | 27.66 | 28.04 | 27.83 | 27.96 | 27.99 | 28.29 | 25.39 | 25.10 | 25.51 | 25.38 | 25.47 | 25.51 | 25.59 |
Girls | 26.29 | 26.25 | 26.44 | 26.26 | 26.28 | 26.29 | 26.61 | 23.66 | 23.57 | 23.90 | 23.70 | 23.78 | 23.88 | 24.03 |
Hat | 29.77 | 29.79 | 29.91 | 29.58 | 29.87 | 29.87 | 30.21 | 27.60 | 27.46 | 27.88 | 27.67 | 27.91 | 27.97 | 28.06 |
Lake | 26.74 | 26.76 | 26.90 | 26.98 | 26.89 | 26.83 | 27.14 | 24.29 | 24.19 | 24.49 | 24.51 | 24.48 | 24.44 | 24.63 |
Leaves | 27.81 | 28.14 | 27.99 | 28.15 | 28.35 | 28.25 | 28.69 | 24.68 | 24.95 | 25.02 | 25.23 | 25.30 | 25.25 | 25.52 |
Lena | 29.68 | 29.57 | 29.81 | 29.65 | 29.88 | 29.82 | 29.96 | 27.14 | 27.18 | 27.38 | 27.12 | 27.39 | 27.41 | 27.49 |
Plants | 30.70 | 30.26 | 30.73 | 30.50 | 30.90 | 30.87 | 30.96 | 28.11 | 27.66 | 28.25 | 27.87 | 28.32 | 28.38 | 28.29 |
Starfish | 27.65 | 27.77 | 27.67 | 28.03 | 27.95 | 27.81 | 28.19 | 25.04 | 25.09 | 25.11 | 25.44 | 25.34 | 25.25 | 25.53 |
Average | 28.22 | 28.20 | 28.46 | 28.28 | 28.40 | 28.37 | 28.65 | 25.63 | 25.57 | 25.92 | 25.80 | 25.90 | 25.90 | 26.06 |
Methods | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR |
Bear | 25.34 | 25.13 | 25.30 | 25.27 | 25.13 | 25.13 | 25.28 | 24.28 | 24.08 | 24.35 | 24.25 | 24.10 | 23.97 | 24.20 |
Bike | 21.12 | 21.01 | 21.42 | 21.33 | 21.32 | 21.47 | 21.60 | 19.94 | 19.68 | 20.09 | 19.91 | 20.01 | 20.22 | 20.33 |
Buddhist | 27.56 | 27.10 | 27.51 | 27.29 | 27.42 | 27.19 | 27.50 | 26.22 | 25.81 | 26.21 | 26.11 | 26.18 | 25.84 | 26.06 |
Butterfly | 22.83 | 22.95 | 23.03 | 23.51 | 23.35 | 23.41 | 23.72 | 21.38 | 21.31 | 21.48 | 22.06 | 21.77 | 22.03 | 22.23 |
Cameraman | 24.33 | 24.23 | 24.64 | 24.52 | 24.46 | 24.59 | 24.71 | 23.08 | 22.93 | 23.23 | 23.22 | 23.02 | 23.40 | 23.46 |
Corn | 21.83 | 21.68 | 21.75 | 22.20 | 21.99 | 22.08 | 22.42 | 20.54 | 20.26 | 20.49 | 20.80 | 20.55 | 20.71 | 20.99 |
Cowboy | 22.88 | 22.65 | 23.04 | 23.04 | 23.02 | 23.11 | 23.23 | 21.68 | 21.26 | 21.71 | 21.69 | 21.60 | 21.81 | 21.91 |
Flower | 23.82 | 23.50 | 23.83 | 23.87 | 23.77 | 24.06 | 24.11 | 22.66 | 22.23 | 22.66 | 22.50 | 22.46 | 22.73 | 22.77 |
Flowers | 23.99 | 23.47 | 24.00 | 23.76 | 23.86 | 23.97 | 23.95 | 23.12 | 22.49 | 23.15 | 22.83 | 22.83 | 22.90 | 22.77 |
Girls | 22.06 | 21.86 | 22.15 | 22.02 | 21.95 | 22.13 | 22.26 | 21.04 | 20.73 | 21.07 | 20.88 | 20.71 | 21.03 | 21.11 |
Hat | 26.08 | 25.89 | 26.30 | 26.23 | 26.49 | 26.53 | 26.60 | 25.00 | 24.74 | 25.18 | 25.21 | 25.27 | 25.50 | 25.44 |
Lake | 22.63 | 22.50 | 22.76 | 22.71 | 22.64 | 22.61 | 22.81 | 21.56 | 21.38 | 21.64 | 21.63 | 21.37 | 21.55 | 21.64 |
Leaves | 22.49 | 22.60 | 22.61 | 22.90 | 22.91 | 22.98 | 23.17 | 20.90 | 20.86 | 20.95 | 21.46 | 21.22 | 21.48 | 21.54 |
Lena | 25.38 | 25.23 | 25.51 | 25.49 | 25.55 | 25.66 | 25.78 | 24.08 | 23.82 | 24.22 | 24.30 | 24.35 | 24.54 | 24.56 |
Plants | 26.25 | 25.75 | 26.34 | 26.03 | 26.40 | 26.39 | 26.39 | 24.98 | 24.48 | 25.07 | 24.71 | 24.91 | 25.08 | 25.02 |
Starfish | 23.27 | 23.20 | 23.23 | 23.45 | 23.32 | 23.32 | 23.57 | 22.10 | 21.91 | 22.08 | 22.10 | 21.98 | 22.08 | 22.25 |
Average | 23.87 | 23.67 | 24.00 | 23.98 | 23.97 | 24.04 | 24.19 | 22.66 | 22.37 | 22.70 | 22.73 | 22.65 | 22.80 | 22.89 |
Methods | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR |
Bear | 0.7807 | 0.7780 | 0.7822 | 0.7784 | 0.7817 | 0.7815 | 0.7889 | 0.7111 | 0.7110 | 0.7113 | 0.7100 | 0.7169 | 0.7123 | 0.7187 |
Bike | 0.8269 | 0.8203 | 0.8290 | 0.8194 | 0.8247 | 0.8208 | 0.8393 | 0.7146 | 0.7073 | 0.7262 | 0.7157 | 0.7285 | 0.7250 | 0.7360 |
Buddhist | 0.8702 | 0.8672 | 0.8664 | 0.8623 | 0.8705 | 0.8673 | 0.8706 | 0.8170 | 0.8177 | 0.8087 | 0.8048 | 0.8194 | 0.8167 | 0.8202 |
Butterfly | 0.9019 | 0.9073 | 0.9047 | 0.9092 | 0.9164 | 0.9143 | 0.9184 | 0.8440 | 0.8565 | 0.8574 | 0.8658 | 0.8729 | 0.8704 | 0.8755 |
Cameraman | 0.8373 | 0.8394 | 0.8259 | 0.8204 | 0.8281 | 0.8285 | 0.8378 | 0.7828 | 0.7835 | 0.7774 | 0.7732 | 0.7801 | 0.7843 | 0.7883 |
Corn | 0.8679 | 0.8716 | 0.8712 | 0.8793 | 0.8787 | 0.8741 | 0.8856 | 0.7774 | 0.7786 | 0.7793 | 0.8052 | 0.8041 | 0.7982 | 0.8137 |
Cowboy | 0.8558 | 0.8544 | 0.8553 | 0.8540 | 0.8580 | 0.8520 | 0.8614 | 0.7837 | 0.7833 | 0.7882 | 0.7879 | 0.7968 | 0.7913 | 0.7978 |
Flower | 0.8194 | 0.8176 | 0.8217 | 0.8214 | 0.8240 | 0.8230 | 0.8369 | 0.7283 | 0.7222 | 0.7331 | 0.7340 | 0.7413 | 0.7446 | 0.7552 |
Flowers | 0.7950 | 0.7868 | 0.7980 | 0.7935 | 0.7989 | 0.7992 | 0.8122 | 0.6963 | 0.6885 | 0.6994 | 0.6949 | 0.7103 | 0.7061 | 0.7150 |
Girls | 0.8065 | 0.8023 | 0.8089 | 0.8011 | 0.8001 | 0.7961 | 0.8152 | 0.7029 | 0.6962 | 0.7129 | 0.7044 | 0.7118 | 0.7096 | 0.7217 |
Hat | 0.8326 | 0.8411 | 0.8319 | 0.8225 | 0.8360 | 0.8338 | 0.8456 | 0.7737 | 0.7776 | 0.7775 | 0.7710 | 0.7879 | 0.7883 | 0.7925 |
Lake | 0.8287 | 0.8290 | 0.8298 | 0.8327 | 0.8323 | 0.8250 | 0.8418 | 0.7433 | 0.7431 | 0.7489 | 0.7515 | 0.7571 | 0.7482 | 0.7653 |
Leaves | 0.9278 | 0.9324 | 0.9301 | 0.9343 | 0.9366 | 0.9337 | 0.9415 | 0.8680 | 0.8794 | 0.8793 | 0.8888 | 0.8910 | 0.8888 | 0.8977 |
Lena | 0.8619 | 0.8637 | 0.8663 | 0.8625 | 0.8712 | 0.8675 | 0.8749 | 0.7971 | 0.8069 | 0.8047 | 0.7974 | 0.8125 | 0.8096 | 0.8182 |
Plants | 0.8373 | 0.8297 | 0.8372 | 0.8346 | 0.8459 | 0.8461 | 0.8477 | 0.7669 | 0.7602 | 0.7672 | 0.7585 | 0.7789 | 0.7878 | 0.7796 |
Starfish | 0.8289 | 0.8305 | 0.8276 | 0.8351 | 0.8304 | 0.8258 | 0.8397 | 0.7433 | 0.7453 | 0.7454 | 0.7606 | 0.7589 | 0.7491 | 0.7671 |
Average | 0.8424 | 0.8420 | 0.8492 | 0.8413 | 0.8458 | 0.8430 | 0.8536 | 0.7657 | 0.7661 | 0.7778 | 0.7702 | 0.7793 | 0.7769 | 0.7851 |
Methods | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR | BM3D | NCSR | PGPD | GSRC- ENSS | RRC | SNSS | HNSS- SSR |
Bear | 0.6538 | 0.6604 | 0.6532 | 0.6597 | 0.6619 | 0.6555 | 0.6645 | 0.6110 | 0.6260 | 0.6087 | 0.6179 | 0.6273 | 0.6177 | 0.6277 |
Bike | 0.6166 | 0.6056 | 0.6263 | 0.6208 | 0.6254 | 0.6311 | 0.6396 | 0.5460 | 0.5293 | 0.5470 | 0.5366 | 0.5478 | 0.5618 | 0.5696 |
Buddhist | 0.7576 | 0.7707 | 0.7567 | 0.7557 | 0.7684 | 0.7647 | 0.7746 | 0.7111 | 0.7360 | 0.7062 | 0.7093 | 0.7383 | 0.7285 | 0.7348 |
Butterfly | 0.7882 | 0.8121 | 0.8005 | 0.8188 | 0.8274 | 0.8262 | 0.8324 | 0.7348 | 0.7638 | 0.7449 | 0.7777 | 0.7834 | 0.7904 | 0.7947 |
Cameraman | 0.7340 | 0.7413 | 0.7301 | 0.7251 | 0.7214 | 0.7445 | 0.7466 | 0.6928 | 0.7057 | 0.6776 | 0.6816 | 0.6553 | 0.7130 | 0.7111 |
Corn | 0.6839 | 0.6769 | 0.6792 | 0.7114 | 0.7044 | 0.7000 | 0.7275 | 0.6036 | 0.5837 | 0.5954 | 0.6236 | 0.6110 | 0.6137 | 0.6467 |
Cowboy | 0.7143 | 0.7126 | 0.7188 | 0.7201 | 0.7313 | 0.7277 | 0.7335 | 0.6589 | 0.6559 | 0.6552 | 0.6578 | 0.6739 | 0.6746 | 0.6793 |
Flower | 0.6482 | 0.6417 | 0.6472 | 0.6541 | 0.6499 | 0.6698 | 0.6728 | 0.5862 | 0.5763 | 0.5803 | 0.5795 | 0.5846 | 0.6047 | 0.6070 |
Flowers | 0.6269 | 0.6176 | 0.6274 | 0.6199 | 0.6334 | 0.6356 | 0.6399 | 0.5848 | 0.5747 | 0.5779 | 0.5707 | 0.5690 | 0.5855 | 0.5885 |
Girls | 0.6223 | 0.6156 | 0.6272 | 0.6248 | 0.6203 | 0.6299 | 0.6413 | 0.5651 | 0.5567 | 0.5639 | 0.5620 | 0.5505 | 0.5721 | 0.5828 |
Hat | 0.7238 | 0.7367 | 0.7294 | 0.7325 | 0.7504 | 0.7530 | 0.7557 | 0.6833 | 0.7048 | 0.6813 | 0.6922 | 0.7170 | 0.7242 | 0.7232 |
Lake | 0.6716 | 0.6739 | 0.6764 | 0.6786 | 0.6822 | 0.6731 | 0.6918 | 0.6178 | 0.6229 | 0.6173 | 0.6223 | 0.6233 | 0.6231 | 0.6403 |
Leaves | 0.8072 | 0.8233 | 0.8121 | 0.8339 | 0.8377 | 0.8365 | 0.8465 | 0.7482 | 0.7627 | 0.7467 | 0.7883 | 0.7811 | 0.7900 | 0.7986 |
Lena | 0.7359 | 0.7488 | 0.7424 | 0.7426 | 0.7565 | 0.7588 | 0.7657 | 0.6815 | 0.6989 | 0.6855 | 0.6945 | 0.7178 | 0.7205 | 0.7208 |
Plants | 0.7006 | 0.7008 | 0.7014 | 0.6970 | 0.7172 | 0.7252 | 0.7180 | 0.6525 | 0.6593 | 0.6475 | 0.6428 | 0.6680 | 0.6776 | 0.6737 |
Starfish | 0.6670 | 0.6695 | 0.6637 | 0.6807 | 0.6741 | 0.6691 | 0.6900 | 0.6053 | 0.6068 | 0.6021 | 0.6111 | 0.6081 | 0.6112 | 0.6288 |
Average | 0.6970 | 0.7005 | 0.7070 | 0.7047 | 0.7101 | 0.7125 | 0.7213 | 0.6427 | 0.6477 | 0.6451 | 0.6480 | 0.6535 | 0.6630 | 0.6705 |
Methods | BM3D | NCSR | PGPD | GSRC-ENSS | RRC | SNSS | GSMM | LRENSS | HNSS-SSR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.08 | 0.8722 | 31.19 | 0.8770 | 31.13 | 0.8696 | 31.06 | 0.8670 | 31.06 | 0.8644 | 31.29 | 0.8765 | 31.32 | 0.8804 | 31.36 | 0.8819 | 31.37 | 0.8829 | |
28.56 | 0.8016 | 28.62 | 0.8045 | 28.62 | 0.7994 | 28.55 | 0.7985 | 28.56 | 0.7936 | 28.72 | 0.8007 | 28.80 | 0.8108 | 28.87 | 0.8122 | 28.85 | 0.8108 | |
25.62 | 0.6866 | 25.59 | 0.6864 | 25.75 | 0.6870 | 25.61 | 0.6815 | 25.67 | 0.6840 | 25.73 | 0.6876 | 25.85 | 0.6959 | 25.90 | 0.7018 | 25.87 | 0.7012 | |
Average | 28.42 | 0.7868 | 28.37 | 0.7893 | 28.50 | 0.7853 | 28.41 | 0.7823 | 28.43 | 0.7806 | 28.58 | 0.7883 | 28.66 | 0.7957 | 28.71 | 0.7986 | 28.70 | 0.8013 |
Methods | Average | |||||||
---|---|---|---|---|---|---|---|---|
TNRD | 32.51 | 0.8967 | 30.06 | 0.8520 | 26.81 | 0.7666 | 29.78 | 0.8384 |
S2S | 32.09 | 0.8894 | 30.04 | 0.8493 | 26.50 | 0.7392 | 29.54 | 0.8260 |
HNSS-SSR | 32.64 | 0.8999 | 30.24 | 0.8566 | 27.02 | 0.7803 | 29.97 | 0.8456 |
Uniform Blur, | Gaussian Blur, | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | BM3D | EPLL | NCSR | JSM | MS- EPLL | SNSS | HNSS- SSR | BM3D | EPLL | NCSR | JSM | MS- EPLL | SNSS | HNSS- SSR |
Bear | 30.49 | 28.87 | 31.14 | 28.09 | 29.15 | 31.37 | 31.48 | 31.99 | 27.63 | 32.25 | 31.30 | 29.99 | 32.66 | 32.82 |
Bike | 24.57 | 23.19 | 25.41 | 23.89 | 23.92 | 25.47 | 25.26 | 26.65 | 22.92 | 26.98 | 26.65 | 23.49 | 26.90 | 27.22 |
Buddhist | 34.33 | 33.44 | 35.02 | 29.93 | 33.29 | 35.35 | 35.59 | 36.91 | 34.46 | 36.90 | 34.42 | 33.55 | 38.24 | 38.35 |
Butterfly | 26.80 | 24.44 | 28.83 | 25.65 | 25.26 | 29.14 | 29.52 | 28.58 | 22.00 | 29.78 | 28.79 | 22.75 | 30.20 | 31.00 |
Cameraman | 27.30 | 26.02 | 28.59 | 26.20 | 26.82 | 28.67 | 28.67 | 27.46 | 26.62 | 28.31 | 27.45 | 27.43 | 28.13 | 28.24 |
Corn | 26.75 | 24.56 | 27.87 | 25.55 | 25.26 | 28.24 | 28.58 | 28.91 | 23.89 | 29.69 | 29.00 | 24.42 | 30.08 | 30.45 |
Cowboy | 27.19 | 25.93 | 27.99 | 25.90 | 26.54 | 28.09 | 28.02 | 28.05 | 24.86 | 28.45 | 27.95 | 26.59 | 28.47 | 28.65 |
Flower | 28.58 | 27.04 | 29.38 | 26.88 | 27.61 | 29.37 | 29.55 | 30.41 | 26.64 | 30.82 | 30.01 | 27.34 | 31.08 | 31.42 |
Flowers | 28.54 | 26.31 | 29.28 | 26.87 | 26.74 | 29.31 | 29.42 | 29.84 | 25.14 | 30.20 | 29.51 | 27.20 | 30.25 | 30.52 |
Girls | 26.47 | 24.00 | 27.15 | 25.29 | 24.00 | 27.22 | 27.34 | 27.82 | 22.70 | 28.11 | 27.72 | 23.21 | 28.15 | 28.50 |
Hat | 30.63 | 29.22 | 31.30 | 28.23 | 29.44 | 31.45 | 31.60 | 31.78 | 29.20 | 32.24 | 31.06 | 28.04 | 32.53 | 32.76 |
Lake | 27.32 | 25.12 | 28.12 | 25.90 | 25.74 | 28.06 | 28.41 | 29.17 | 22.60 | 29.48 | 28.91 | 26.23 | 29.63 | 29.91 |
Leaves | 26.89 | 23.46 | 28.98 | 25.48 | 23.48 | 29.08 | 29.60 | 29.00 | 21.38 | 30.34 | 29.16 | 21.53 | 30.69 | 31.63 |
Lena | 30.35 | 28.13 | 31.26 | 28.00 | 28.46 | 31.32 | 31.53 | 32.24 | 28.00 | 32.67 | 31.46 | 26.64 | 33.02 | 33.33 |
Plants | 32.07 | 29.83 | 33.12 | 28.88 | 29.58 | 33.52 | 33.78 | 33.99 | 30.18 | 34.65 | 32.87 | 31.35 | 35.59 | 35.93 |
Starfish | 28.08 | 26.32 | 29.20 | 26.63 | 27.08 | 29.42 | 29.63 | 30.20 | 26.20 | 30.98 | 30.08 | 26.35 | 31.40 | 31.76 |
Average | 28.52 | 26.62 | 29.54 | 26.71 | 27.02 | 29.69 | 29.87 | 30.19 | 25.90 | 30.74 | 29.77 | 26.63 | 31.06 | 31.41 |
Uniform Blur, | Gaussian Blur, | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | BM3D | EPLL | NCSR | JSM | MS- EPLL | SNSS | HNSS- SSR | BM3D | EPLL | NCSR | JSM | MS- EPLL | SNSS | HNSS- SSR |
Bear | 0.8074 | 0.8251 | 0.8269 | 0.6621 | 0.8263 | 0.8386 | 0.8405 | 0.8618 | 0.8560 | 0.8618 | 0.8134 | 0.8673 | 0.8836 | 0.8852 |
Bike | 0.7589 | 0.7393 | 0.7996 | 0.7046 | 0.7741 | 0.8081 | 0.8019 | 0.8511 | 0.8082 | 0.8599 | 0.8403 | 0.8274 | 0.8678 | 0.8730 |
Buddhist | 0.8979 | 0.9158 | 0.9026 | 0.6701 | 0.8926 | 0.9205 | 0.9246 | 0.9337 | 0.9434 | 0.9256 | 0.8481 | 0.9297 | 0.9583 | 0.9563 |
Butterfly | 0.8714 | 0.8743 | 0.9076 | 0.7629 | 0.8852 | 0.9212 | 0.9251 | 0.9157 | 0.8840 | 0.9220 | 0.8814 | 0.8922 | 0.9422 | 0.9470 |
Cameraman | 0.8258 | 0.8345 | 0.8568 | 0.6731 | 0.8256 | 0.8592 | 0.8631 | 0.8416 | 0.8486 | 0.8547 | 0.7845 | 0.8271 | 0.8732 | 0.8756 |
Corn | 0.8406 | 0.8175 | 0.8692 | 0.7753 | 0.8324 | 0.8844 | 0.8909 | 0.8970 | 0.8619 | 0.9079 | 0.8860 | 0.8678 | 0.9221 | 0.9264 |
Cowboy | 0.8452 | 0.8544 | 0.8668 | 0.7181 | 0.8580 | 0.8766 | 0.8776 | 0.8861 | 0.8698 | 0.8880 | 0.8452 | 0.8838 | 0.9031 | 0.9045 |
Flower | 0.8119 | 0.7984 | 0.8392 | 0.6937 | 0.8173 | 0.8445 | 0.8484 | 0.8701 | 0.8511 | 0.8773 | 0.8340 | 0.8608 | 0.8925 | 0.8975 |
Flowers | 0.8022 | 0.7980 | 0.8273 | 0.6553 | 0.8105 | 0.8402 | 0.8402 | 0.8592 | 0.8397 | 0.8617 | 0.8081 | 0.8569 | 0.8773 | 0.8827 |
Girls | 0.7907 | 0.7853 | 0.8216 | 0.7240 | 0.8081 | 0.8307 | 0.8310 | 0.8537 | 0.8203 | 0.8626 | 0.8404 | 0.8353 | 0.8732 | 0.8780 |
Hat | 0.8427 | 0.8435 | 0.8505 | 0.6428 | 0.8220 | 0.8597 | 0.8645 | 0.8637 | 0.8673 | 0.8674 | 0.7938 | 0.8384 | 0.8909 | 0.8930 |
Lake | 0.8230 | 0.8285 | 0.8471 | 0.7021 | 0.8288 | 0.8538 | 0.8609 | 0.8836 | 0.8566 | 0.8865 | 0.8457 | 0.8633 | 0.9021 | 0.9061 |
Leaves | 0.8947 | 0.8792 | 0.9345 | 0.8179 | 0.8950 | 0.9410 | 0.9470 | 0.9338 | 0.8922 | 0.9452 | 0.9153 | 0.8986 | 0.9587 | 0.9654 |
Lena | 0.8563 | 0.8649 | 0.8753 | 0.6966 | 0.8606 | 0.8862 | 0.8903 | 0.9028 | 0.8976 | 0.9036 | 0.8485 | 0.8944 | 0.9246 | 0.9267 |
Plants | 0.8563 | 0.8636 | 0.8745 | 0.6707 | 0.8579 | 0.8932 | 0.8969 | 0.9042 | 0.9000 | 0.9057 | 0.8405 | 0.9011 | 0.9336 | 0.9349 |
Starfish | 0.8178 | 0.8205 | 0.8521 | 0.7238 | 0.8290 | 0.8621 | 0.8652 | 0.8849 | 0.8653 | 0.8937 | 0.8612 | 0.8696 | 0.9094 | 0.9136 |
Average | 0.8339 | 0.8339 | 0.8595 | 0.7058 | 0.8390 | 0.8700 | 0.8730 | 0.8839 | 0.8664 | 0.8890 | 0.8429 | 0.8696 | 0.9070 | 0.9104 |
Methods | BM3D | EPLL | NCSR | JSM | MS-EPLL | SNSS | JGD-SSR | LRENSS | HNSS-SSR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uniform | 29.13 | 0.8026 | 27.23 | 0.7979 | 30.03 | 0.8239 | 27.22 | 0.6819 | 27.26 | 0.8050 | 30.00 | 0.8222 | 30.38 | 0.8294 | 30.25 | 0.8308 | 30.34 | 0.8289 |
Gaussian | 30.20 | 0.8544 | 27.21 | 0.8371 | 30.74 | 0.8529 | 29.86 | 0.8080 | 28.69 | 0.8434 | 30.96 | 0.8631 | 31.35 | 0.8683 | 31.30 | 0.8703 | 31.38 | 0.8697 |
Average | 29.67 | 0.8285 | 27.22 | 0.8175 | 30.39 | 0.8384 | 28.54 | 0.7450 | 28.19 | 0.8242 | 30.48 | 0.8427 | 30.87 | 0.8489 | 30.78 | 0.8506 | 30.86 | 0.8493 |
Methods | Uniform Blur | Gaussian Blur | Average | |||
---|---|---|---|---|---|---|
RED | 30.03 | 0.8238 | 30.91 | 0.8566 | 30.47 | 0.8402 |
IRCNN | 30.30 | 0.8281 | 31.29 | 0.8596 | 30.78 | 0.8438 |
H-PnP | 30.25 | 0.8238 | 31.33 | 0.8651 | 30.79 | 0.8445 |
HNSS-SSR | 30.34 | 0.8289 | 31.38 | 0.8697 | 30.86 | 0.8493 |
Image Denoising () | |||||||||
---|---|---|---|---|---|---|---|---|---|
Methods | BM3D [29] | NCSR [13] | PGPD [28] | GSRC-ENSS [1] | RRC [41] | SNSS [24] | GSMM [46] | LRENSS [7] | HNSS-SSR |
Time (s) | 0.8 | 224.3 | 8.3 | 369.2 | 226.6 | 602.1 | - | 108.6 | 49.4 |
Image Deblurring | |||||||||
Methods | BM3D [59] | EPLL [14] | NCSR [13] | JSM [60] | MS-EPLL [6] | SNSS [24] | JGD-SSR [3] | LRENSS [7] | HNSS-SSR |
Time (s) | 0.9 | 49.7 | 98.1 | 158.9 | 214.2 | 4830.4 | 405.8 | 707.6 | 690.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Liu, H.; Liang, L.; Wang, W. Learning the Hybrid Nonlocal Self-Similarity Prior for Image Restoration. Mathematics 2024, 12, 1412. https://doi.org/10.3390/math12091412
Yuan W, Liu H, Liang L, Wang W. Learning the Hybrid Nonlocal Self-Similarity Prior for Image Restoration. Mathematics. 2024; 12(9):1412. https://doi.org/10.3390/math12091412
Chicago/Turabian StyleYuan, Wei, Han Liu, Lili Liang, and Wenqing Wang. 2024. "Learning the Hybrid Nonlocal Self-Similarity Prior for Image Restoration" Mathematics 12, no. 9: 1412. https://doi.org/10.3390/math12091412