On the Limiting Distribution of the Spectra of Random Block Matrices
Abstract
1. Introduction
1.1. List of Notations
1.2. Model Representation
1.3. Toeplitz and Hankel Random Matrices
1.3.1. Hankel Matrices
1.3.2. Circulant Matrices
2. Main Result
Rectangular Blocks
3. Proof of the Main Result
3.1. Truncation
3.2. Special Representation for the Difference Between Two Resolvents
3.3. Estimations of Quantities –
3.3.1. Estimation of
3.3.2. Estimation of
3.3.3. Estimation of
3.3.4. Estimation of
3.3.5. Estimation of
3.3.6. Estimation of
3.4. Girko’s Lemma
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girko, V. Random block matrix density and SS-Law. Random Oper. Stock. Equ. 2000, 8, 189–194. [Google Scholar] [CrossRef]
- Bolla, M. Distribution of the eigenvalues of random block-matrices. Linear Algebra Its Appl. 2004, 377, 219–240. [Google Scholar] [CrossRef]
- Bruc, W.; Dembo, A.; Iang, T.J. Spectral Measure of Large Random Hankel, Markov and Toeplitz Matrices. Ann. Probab. 2006, 34, 1–38. [Google Scholar] [CrossRef]
- Far, R.; Oraby, T.; Bruc, W.; Speicher, R. Spectra of large block matrices. Eur. J. Pure Appl. Math. 2024, 17, 2550–2561. [Google Scholar] [CrossRef]
- Oraby, T. The Spectral Laws og Hermitian Block-Matrices with Large Blocks. Elect. Comm. Probab. 2007, 12, 465–476. [Google Scholar]
- Kologlu, M.; Kopp, G.S.; Miller, S.J. The limiting spectral measure for ensemble of symmetric block circulant matrices. arXiv 2010, arXiv:1008.4812v5. [Google Scholar] [CrossRef][Green Version]
- Granzio, D.; Zohren, S.; Roberts, S. Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training. J. Mach. Learn. Res. 2022, 23, 1–65. [Google Scholar]
- Xia, J.; Li, S.; Yang, Z.; Jaimoukha, I.; Gunduz, D. Meta-learning based Altarnating Minimization Algorithm for Non-convex Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5366–5380. [Google Scholar] [CrossRef]
- El Karoui, N. Graph connection Laplacian and random matrices with random blocks. Inf. Inference 2015, 4, 1–42. [Google Scholar] [CrossRef][Green Version]
- Nadutkina, A.V.; Tikhomirov, A.N.; Timushev, D.A. Marchenko–Pastur law for the spectrum of a random weighted bipartite graph. Sib. Adv. Math. 2024, 34, 146–153. [Google Scholar] [CrossRef]
- Avrachenkov, K.; Cottatellucci, L.; Kadavankandy, A. Spectral Properties of Random Matrices for Stochastic Block Model. In Proceedings of the 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Mumbai, India, 25–29 May 2015; pp. 537–544. [Google Scholar] [CrossRef]
- Speicher, R. Free probability and random matrices. arXiv 2014, arXiv:14043393v1. [Google Scholar]
- Fawaz, N.; Zarifi, K.; Debbah, M.; Gesbert, D. Asymptotic Capacity and Optimal Precoding in MIMO Multi-Hop Relay Networks. IEEE Trans. Inf. Theory 2011, 57, 2050–2069. [Google Scholar] [CrossRef]
- Müller, R. On the Asymptotic Eigenvalue Distribution of Concatenated Vector-Valued Fading Channels. IEEE Trans. Inf. Theory 2002, 48, 2086–2091. [Google Scholar] [CrossRef]
- An, X.; Du, L.; Jiang, F.; Zhang, Y.; Deng, Z.; Kurths, J. A few-shot identification method for stochastic dynamical systems on residual multieaks adaptive sampling. Caos 2024, 34, 073118. [Google Scholar] [CrossRef]
- Pfaffel, O.; Schlemm, E. Limiting Spectral Distribution of a New Random Matrix Model with Dependece across Rows and Columns. Linear Algebra Its Appl. 2012, 436, 2966–2979. [Google Scholar] [CrossRef]
- Aljadeff, J.; Renfrew, D.; Stern, M. Eigenvalues of block structured asymmetric random matrices. J. Math. Phys. 2015, 56, 103502. [Google Scholar] [CrossRef]
- Basu, R.; Bose, A.; Ganguly, S.; Hazra, R.S. Limiting Spectral Distribution of Block matrices with Töplitz Block Structure. arXiv 2011, arXiv:1111.1901v1. [Google Scholar]
- Beckwith, O.; Luo, V.; Miller, S.J.; Shen, K.; Triantofillou, N. Distribution of eigenvalues of weighted structured matrix ensembles. arXiv 2015, arXiv:1112.3719v2. [Google Scholar]
- Blackwell, K.; Borade, N.; Vi, C.D.; Luntzlara, N.; Ma, R.; Miller, S.J.; Wang, M.; Xu, W. Distribution of eigenvalues of random real symmetric block matrices. arXiv 2019, arXiv:1908.03834v4. [Google Scholar]
- Cicuta, G.M.; Pernici, M. Sparse Random Block Matrices. J. Phys. A Math. Theor. 2021, 55, 175202. [Google Scholar] [CrossRef]
- Dette, H.; Reuther, B. Random Block Matrices and Matrix Orthogonal Polynomials. J. Theor. Probab. 2010, 23, 378–400. [Google Scholar] [CrossRef]
- Guhlich, M.; Nagel, J.; Dette, H. Random block matrices generalizing the classical Jacobi and Laguerre ensembles. J. Multivar. Anal. 2010, 101, 1884–1897. [Google Scholar] [CrossRef]
- Dunn, T.; Fleishmann, H.L.; Jackson, F.; Khunger, S.; Miller, S.J.; Reifenberg, L.; Shashkov, A.; Willis, S. Limiting Spectral Distirbutions of Families of Block Matrix Ensembles. arXiv 2022, arXiv:2109.01464v1. [Google Scholar]
- Bogomolny, E.; Giraud, O. Statistical properties of structured random matrices. arXiv 2021, arXiv:2012.14322v1. [Google Scholar] [CrossRef] [PubMed]
- Krueger, T.; Renfrew, D. Singularity degree of structured random matrices. In Annales de l’Institut Henri Poincare (B) Probabilites et Statistiques; Institut Henri Poincaré: Paris, France, 2025; Volume 61, pp. 1416–1442. [Google Scholar] [CrossRef]
- Tikhomirov, A.N.; Timushev, D.A.; Gulyaeva, S.T. Limit Theorems for Spectra of Circulant Block Matrices with Large Random Blocks. Mathematics 2024, 12, 2291. [Google Scholar] [CrossRef]
- Blackwell, K.; Borade, N.; Bose, A.; Vi, C.D.; Luntzlara, N.; Ma, R.; Miller, S.J.; Mukherjee, S.S.; Wang, M.; Xu, W. Distribution of eigenvalues of matrix ensembles arising from Wigner and palindromic Toeplitz blocks. arXiv 2021, arXiv:2102.05839v1. [Google Scholar]
- Li, Y.; Liu, D.; Wang, Z. Limit Distributions of Eigenvalues for Random Block Toeplitz and Hankel Matrices. J. Theor. Probab. 2011, 24, 1063–1086. [Google Scholar] [CrossRef]
- Chin, C.W. Necessary and Sufficient Conditions for Convergence to the Semicircle Distribution. Random Matrices Theory Appl. 2023, 12, 2250045. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, J. Necessary and sufficient conditions for the Marcĕnko–Pastur law for sample correlation matrices. Stat. Probab. Lett. 2025, 221, 110377. [Google Scholar] [CrossRef]
- Ding, X. Spectral analysis of large block random matrices with rectangular blocks. Lith. Math. J. 2014, 54, 115–126. [Google Scholar] [CrossRef]
- Khorunzhy, A.M.; Khoruzhenko, B.A.; Pastur, L.A. On asymptotic propertiies of large random matrices with independnet entries. J. Math. Phys. 1996, 37, 5033–5060. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhomirov, A.N. On the Limiting Distribution of the Spectra of Random Block Matrices. Mathematics 2025, 13, 2056. https://doi.org/10.3390/math13132056
Tikhomirov AN. On the Limiting Distribution of the Spectra of Random Block Matrices. Mathematics. 2025; 13(13):2056. https://doi.org/10.3390/math13132056
Chicago/Turabian StyleTikhomirov, Alexander N. 2025. "On the Limiting Distribution of the Spectra of Random Block Matrices" Mathematics 13, no. 13: 2056. https://doi.org/10.3390/math13132056
APA StyleTikhomirov, A. N. (2025). On the Limiting Distribution of the Spectra of Random Block Matrices. Mathematics, 13(13), 2056. https://doi.org/10.3390/math13132056