On the Exact Asymptotic Error of the Kernel Estimator of the Conditional Hazard Function for Quasi-Associated Functional Variables
Abstract
1. Introduction
2. Model Construction and Its Estimator
3. Assumptions and Main Results
3.1. Background Information and Assumptions
- (A1)
- and such that:
- (A2)
- For , are differentiable at .
- (A3)
- Assume that both the conditional distribution function and the conditional density function satisfy a Hölder continuity condition. Specifically,
- (A4)
- is a derivative of H also is bounded and lipschitzian function resulting:and
- (A5)
- For a differentiable, Lipschitzian and bounded function K, and such:: is the indicator function on , is derivative of with:
- (A6)
- The parameters are satisfied:
- (A7)
- The random pairs are inversely related to covariance coefficient , satisfying:
- (A8)
3.2. Brief Remarks on the Assumptions
3.3. Main Results
Mean Squared Convergence
4. Simulation Study: Empirical Validation of the Asymptotic Kernel Hazard Estimator
4.1. Overview and Objectives
4.2. Functional Data Generation Under Quasi-Association
4.3. Conditional Model and True Hazard Function
4.4. Kernel Estimation of the Conditional Hazard Function
4.5. Estimation and Visualization
4.6. Monte Carlo Assessment and Mean Squared Error
- A new set of quasi-associated functional data is generated.
- The hazard function is estimated.
- The empirical MSE is computed:
4.7. Discussion
5. Real Data Application
5.1. Data Description
5.2. Functional Transformation
5.3. Kernel Estimation
5.4. Results and Goodness of Fit
5.5. Interpretation and Applicability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bosq, D.; Lecoutre, J.B. Théorie de l’Estimation Fonctionnelle; Economica: 1987. Available online: https://www.amazon.fr/Th%C3%A9orie-lestimation-fonctionnelle-D-Bosq/dp/2717813004 (accessed on 14 March 2025).
- Dabo-Niang, S. Density estimation in an infinite dimensional space: Application to diffusion processes. Comptes Rendus Math. 2002, 334, 213–216. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-0-387-30369-7. [Google Scholar]
- Ferraty, F.; Vieu, P. Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination. J. Nonparametric Stat. 2004, 16, 111–125. [Google Scholar] [CrossRef]
- Ferraty, F.; Mas, A.; Vieu, A.P. Nonparametric regression on functional data: Inference and practical aspects. Aust. N. Z. J. Stat. 2007, 49, 267–286. [Google Scholar] [CrossRef]
- Ferraty, F.; Goia, A.; Vieu, P. Régression non-paramétrique pour des variables aléatoires fonctionnelles mélangeantes. Comptes Rendus Math. 2002, 334, 217–220. [Google Scholar] [CrossRef]
- Mechab, W.; Lakcasi, A. Nonparametric relative regression for associated random variables. Metron 2016, 74, 75–97. [Google Scholar] [CrossRef]
- Watson, G.S.; Leadbetter, M.R. Hazard Analysis; Biometrika: Sheffield, UK, 1964; Volume 51, pp. 175–184. [Google Scholar]
- Ferraty, F.; Vieu, A.R.A.F. Estimation nonparametric de la fonction de hasard avec variable explicative fonctionnelle. Rev. Roum. Math. Pures Appl. 2008, 53, 1–18. [Google Scholar]
- Quintela-Del-Río, A. Hazard function given a functional variable: Non-parametric estimation under strong mixing conditions. J. Nonparametric Stat. 2008, 5, 413–430. [Google Scholar] [CrossRef]
- Rabhi, A.; Benaissa, S.; Hamel, E.; Mechab, B. Mean square error of the estimator of the conditional hazard function. Appl. Math. 2013, 40, 405–420. Available online: http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_4064-am40-4-2 (accessed on 14 March 2025). [CrossRef]
- Belguerna, A.; Daoudi, H.; Abdelhak, K.; Mechab, B.; Elmezouar, Z.C.; Alshahrani, F. A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios. Mathematics 2024, 12, 495. [Google Scholar] [CrossRef]
- Bassoudi, M.; Belguerna, A.; Daoudi, H.; Laala, Z. Asymptotic Properties of the Conditional Hazard Function Estimate by the Local Linear Method for Functional Ergodic Data. J. Appl. Math. Inform. 2023, 41, 1341–1364. [Google Scholar] [CrossRef]
- Laksaci, A.; Mechab, B. Estimation non-paramétrique de la fonctionde hasard avec variable explicative fonctionnelle: Cas des données spatiales. Rev. Roum. Math. Pures Appl. 2010, 55, 35–51. [Google Scholar]
- Lakcasi, A.; Mechab, B. Conditional hazard estimate for functional random fields. J. Stat. Theory Pract. 2014, 8, 192–220. [Google Scholar] [CrossRef]
- Gagui, A.; Chouaf, A. On the nonparametric estimation of the conditional hazard estimator in a single functional index. Stat. Transit. New Ser. 2022, 23, 89–105. [Google Scholar] [CrossRef]
- Rabhi, A.; Soltani, S. Exact asymptotic errors of the hazard conditional rate kernel for functional random fields. Appl. Appl. Math. 2016, 11, 527–558. [Google Scholar]
- Belkhir, N.; Rabhi, A.; Soltani, S. Exact Asymptotic Errors of the Hazard Conditional Rate Kernel. J. Stat. Appl. Probab. Lett. 2015, 3, 191–204. [Google Scholar]
- Doukhan, P.; Louhichi, S. A new weak dependence condition and applications to moment inequalities. Stoch. Processes Their Appl. 1999, 84, 313–342. [Google Scholar] [CrossRef]
- Bulinski, A.; Suquet, C. Asymptotical behaviour of some functionals of positively and negatively dependent random fields. Fundam. Prikl. Mat. 1998, 4, 479–492. Available online: https://www.mathnet.ru/eng/fpm/v4/i2/p479 (accessed on 24 February 2025).
- Kallabis, R.S.; Neumann, M.H. An exponential inequality under weak dependence. Bernoulli 2006, 12, 333–350. [Google Scholar] [CrossRef]
- Attaoui, S.; Benouda, O.; Bouzebda, S.; Laksaci, A. Limit theorems for kernel regression estimator for quasi-associated functional censored time series within single index structure. Mathematics 2025, 13, 886. [Google Scholar] [CrossRef]
- Tabti, H.; Saidi, A.A. Estimation and simulation of conditional hazard function in the quasi-associated framework when the observations are linked via a functional single-index structure. Commun. Stat.-Theory Methods 2017, 47, 816–838. [Google Scholar] [CrossRef]
- Douge, L. Théormes limites pour des variables quasi-associes hilbertiennes. Ann. de l’ISUP 2010, 4, 51–60. [Google Scholar]
- Daoudi, H.; Mechab, B.; Elmezouar, Z.C. Asymptotic Normality of a Conditional Hazard Function Estimate in the Single Index for Quasi-Associated Data. Commun. Stat. Theory Methods 2018, 49, 513–530. [Google Scholar] [CrossRef]
- Daoudi, H.; Mechab, B.; Benaissa, S.; Rabhi, A. Asymptotic normality of the nonparametric conditional density function estimate with functional variables for the quasi-associated data. Int. J. Stat. Econ. 2019, 20. Available online: http://www.ceser.in/ceserp/index.php/bse/article/view/6131 (accessed on 6 January 2025).
- Daoudi, H.; Mechab, B. Asymptotic Normality of the Kernel Estimate of Conditional Distribution Function for the Quasi-Associated Data. Pak. J. Stat. Oper. Res. 2019, 15, 999–1015. [Google Scholar] [CrossRef]
- Bouaker, I.; Belguerna, A.; Daoudi, H. The Consistency of the Kernel Estimation of the Function Conditional Density for Quasi-Associated Data in High-Dimensional Statistics. J. Sci. Arts 2022, 22, 247–256. [Google Scholar] [CrossRef]
- Daoudi, H.; Elmezouar, Z.C.; Alshahrani, F. Asymptotic Results of Some Conditional Nonparametric Functional Parameters in High Dimensional Associated Data. Mathematics 2023, 11, 4290. [Google Scholar] [CrossRef]
- Troutman, J.L. Variational Calculus and Optimal Control; Springer: New York, NY, USA, 1996; ISBN 978-0-387-94626-9. Available online: https://link.springer.com/book/10.1007/978-1-4612-0737-5 (accessed on 2 April 2025).
- Sarda, P.; Vieu, P. Kernel regression. In Smoothing and Regression. Approaches, Computation and Application; Schimek, M., Ed.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2000; pp. 43–70. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118150658 (accessed on 12 January 2025).
- Laksaci, A. Convergence en moyenne quadratique de l’estimateur à noyau de la densité conditionnelle avec variable explicative fonctionnelle. Ann. de l’ISUP 2007, 3, 69–80. Available online: https://hal.science/hal-03635451 (accessed on 9 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rassoul, A.; Belguerna, A.; Daoudi, H.; Elmezouar, Z.C.; Alshahrani, F. On the Exact Asymptotic Error of the Kernel Estimator of the Conditional Hazard Function for Quasi-Associated Functional Variables. Mathematics 2025, 13, 2172. https://doi.org/10.3390/math13132172
Rassoul A, Belguerna A, Daoudi H, Elmezouar ZC, Alshahrani F. On the Exact Asymptotic Error of the Kernel Estimator of the Conditional Hazard Function for Quasi-Associated Functional Variables. Mathematics. 2025; 13(13):2172. https://doi.org/10.3390/math13132172
Chicago/Turabian StyleRassoul, Abdelkader, Abderrahmane Belguerna, Hamza Daoudi, Zouaoui Chikr Elmezouar, and Fatimah Alshahrani. 2025. "On the Exact Asymptotic Error of the Kernel Estimator of the Conditional Hazard Function for Quasi-Associated Functional Variables" Mathematics 13, no. 13: 2172. https://doi.org/10.3390/math13132172
APA StyleRassoul, A., Belguerna, A., Daoudi, H., Elmezouar, Z. C., & Alshahrani, F. (2025). On the Exact Asymptotic Error of the Kernel Estimator of the Conditional Hazard Function for Quasi-Associated Functional Variables. Mathematics, 13(13), 2172. https://doi.org/10.3390/math13132172