A Hybrid Harmony Search Algorithm for Distributed Permutation Flowshop Scheduling with Multimodal Optimization
Abstract
1. Introduction
2. Problem Description
- All jobs are ready when processing starts.
- The number of jobs and their processing times on machines are known, and are non-negative.
- Each job can be processed only on one machine in a given factory at a given time, and cannot be pre-empted.
- Each machine can process only one job at a time, and completes all jobs in sequence.
- The preparation time for each job is sequence independent, and is included in its processing time.
3. Proposed Algorithm
3.1. Harmony Search Algorithm
Algorithm 1. Harmony search algorithm (HS). |
01. Initialize parameters rh, rp, sh, bw; 02. For (i =1 to sh){ 03. Select values within the range of the decision variable to generate a harmony solution; 04. Put the solution into the harmony memory HM; 05. } 06. Repeat 07. ; 08. For (i =1 to n){ 09. Generate a random number r1; 10. ){ 11. from the historical solution of HM; 12. Generate a random number r2; 13. ) 14. Adjust this decision variable according to the adjustment bandwidth bw to obtain a new decision variable; 15. } 16. Else{ 17. within the range of values of the decision variable; 18. } 19. } 20. in HM; 21. ; 23. Until (the stopping condition is satisfied); 24. Return; |
3.1.1. Harmony Memory Initialization
3.1.2. New Solution Generation
3.1.3. Harmony Memory Update
3.2. Harmony Search with Iterative Optimization
3.2.1. Initialization of HM
Algorithm 2. D-NEH algorithm. |
01. Initialize the parameter sh; 02. by arranging the J jobs in descending order according to their processing times on the machines; 03. Randomly generate the other (sh − 1) job sequences; 04. For (i = 1 to sh){ 05. ; 06. ; 07. For (j=F; j<J; j++){ 08. ; 09. For (f=1; f<=F; f++){ 10. For (k=1; k<=J; k++){ 11. Place the (j+1)-th job into the k-th possible position of the partial sequence for factory f; 12. } 13. Record the best partial job sequence in factory f; 14. } 15. } 17. into HM; 18. } 19. Return; |
3.2.2. Generation of New Solution
Algorithm 3. Iterative optimization algorithm (IOA). |
01. ; 02. Repeat 03. and record it as fmax; 04. Set global ← false; 05. ){ 06. For (f =1 to F){ 07. If (f = fmax) continue; 08. Insert job j into factory f; 09. ; 10. ; 11. ){ 12. ; 13. Set global ← true; 14. } 15. If (global=true) break; 16. } 17. If (global=true) break; 18. } 19. Until global=false; 20. ; 21. Return; |
Algorithm 4. New solution generation algorithm (NSGA). |
01. Initialize parameters rh, rp, bw; 02. Set ; 03. Obtain the total number of solution structures t of HM; 04. For (i =1 to t){ 05. ; 06. ; 07. For (j=1 to J){ 08. Generate two random numbers r1 and r2; 09. ){ 10. ; 11. }Else{ 12. ; 13. } 14. ){ 15. to within the range (max{0, j-bw}, min{ j+bw, J}); 16. } 17. } 18. ; 19. ; 20. } 21. Sort the t new candidate solutions in descending order according to values of the objective function, and obtain the new solution set {}; 22. Return; |
3.2.3. Update of HM
Algorithm 5. Update algorithm. |
01. For (i =1 to t) { 02. Set pos ← −1; ms ← −1; 03. For (h =1 to sh){ 04. { 05. Set pos ←; 06. } 07. } 08. { 09. ; 10. } 11. } 12. Return; |
3.2.4. The Proposed Algorithm
Algorithm 6. IOHS algorithm. |
01. Generate the initial solution set of HM by using D-NEH algorithm; 02. Repeat 03. by using the NSGA algorithm; 04. Use the Update algorithm to update HM; 05. Until (the stopping condition is satisfied) 06. Calculate the objective function values based on Equation (7); 07. Output the solutions satisfying multimodal optimization based on Equation (8); 08. Return; |
4. Simulations
4.1. Test Dataset
4.2. Parameter Analysis
4.3. Experimental Verification
4.3.1. Comparison of HS and IOHS
4.3.2. Algorithms Comparison
4.4. Discussion
- By using the distributed NEH algorithm D-NEH to generate the initial solution set, it can improve the quality of the initial solutions, thereby accelerating the algorithm’s convergence speed.
- The proposed iterative optimization algorithm IOA can further optimize the candidate solutions through selection–insertion and pairwise exchange operations, which significantly enhance the IOHS algorithm’s search capability and solution quality.
- It dynamically adjusts its search strategy through parameters (e.g., rh and rp), balancing the guidance of historical optimal solutions (convergence) with random adjustments (divergence) to avoid local optima. This ensures a more comprehensive exploration of the solution space.
- The constructed algorithm can find high-quality solutions within a reasonable time through optimization operations and dynamic updates to harmony memory, which make it applicable to large-scale scheduling problems.
- The IOHS algorithm demonstrated more stable and superior performance compared to the BSIG, Jaya, and NEA algorithms on 600 newly generated datasets. Its lower average relative percentage deviation indicates higher accuracy and robustness in solving DPFSP problems.
- As it is a meta-heuristic, its computational overhead is significant. Compared with heuristic algorithms, it is not suitable for scenarios requiring real-time scheduling.
- The algorithm’s performance heavily depends on key parameters (e.g., rh, rp, and bw), which require experimental tuning. Improper parameter settings may lead to premature convergence (trapping in local optima) or inefficient exploration.
- Compared with more intelligent optimization algorithms such as Q-learning, this meta-heuristic still has high randomness in the solution space search process.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Wang, L.; Wang, J.J. A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flowshop. Knowl. -Based Syst. 2020, 194, 105536. [Google Scholar] [CrossRef]
- Li, X.P.; Wu, C. Heuristic for no-wait flow shops with makespan minimization based on total idle-time increments. Sci. China Ser. F Inf. Sci. 2008, 51, 896–909. [Google Scholar] [CrossRef]
- Gogos, C. Solving the distributed permutation flow-shop scheduling problem using constrained programming. Appl. Sci. 2023, 13, 12562. [Google Scholar] [CrossRef]
- Hao, J.H.; Li, J.Q.; Du, Y.; Song, M.X.; Duan, P.; Zhang, Y.Y. Solving distributed hybrid flowshop scheduling problems by a hybrid brainstorm optimization algorithm. IEEE Access 2019, 7, 66879–66894. [Google Scholar] [CrossRef]
- Geng, Y.; Li, J. An improved hyperplane assisted multiobjective optimization for distributed hybrid flowshop scheduling problem in glass manufacturing systems. Comput. Model. Eng. Sci. 2023, 134, 241–266. [Google Scholar]
- Zhang, W.; Geng, H.; Li, C.; Gen, M.; Zhang, G.; Deng, M. Q-learning-based multi-objective particle swarm optimization with local search within factories for energy-efficient distributed flow-shop scheduling problem. J. Intell. Manuf. 2025, 36, 185–208. [Google Scholar] [CrossRef]
- Bai, D.; Liu, T.; Zhang, Y.; Chu, F.; Qin, H.; Gao, L.; Su, Y.; Huang, M. Scheduling a Distributed Permutation Flowshop With Uniform Machines and Release Dates. IEEE Trans. Autom. Sci. Eng. 2024, 22, 215–227. [Google Scholar] [CrossRef]
- Zhao, F.; Zhuang, C.; Wang, L.; Dong, C. An Iterative Greedy Algorithm with Q-Learning Mechanism for the Multiobjective Distributed No-Idle Permutation Flowshop Scheduling. IEEE Trans. Autom. Sci. Eng. 2024, 54, 3207–3219. [Google Scholar] [CrossRef]
- Li, Q.Y.; Pan, Q.K.; Sang, H.Y.; Jing, X.L.; Framiñán, J.M.; Li, W.M. Self-Adaptive Population-Based Iterated Greedy Algorithm for Distributed Permutation Flowshop Scheduling Problem with Part of Jobs Subject to a Common Deadline Constraint. Expert Syst. Appl. 2024, 248, 123278. [Google Scholar] [CrossRef]
- Song, H.B.; Lin, J.; Chen, Y.R. An effective two-stage heuristic for scheduling the distributed assembly flowshops with sequence dependent setup times. Comput. Oper. Res. 2024, 173, 106850. [Google Scholar] [CrossRef]
- Perez-Gonzalez, P.; Framiñán, J.M. A review and classification on distributed permutation flowshop scheduling problems. Eur. J. Oper. Res. 2024, 312, 1–21. [Google Scholar] [CrossRef]
- Yu, Y.; Zhong, Q.; Sun, L.; Han, Y.; Zhang, Q.; Jing, X.; Wang, Z. A Self-adaptive two stage iterative greedy algorithm based job scales for energy-efficient distributed permutation flowshop scheduling problem. Swarm Evol. Comput. 2025, 92, 101777. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Zhang, T.H.; Geem, Z.W. Review of harmony search with respect to algorithm structure. Swarm Evol. Comput. 2019, 48, 31–43. [Google Scholar] [CrossRef]
- Oh, E.; Geem, Z.W. Exploring harmony search for power system optimization: Applications, formulations, and open problems. Appl. Energy 2025, 398, 126452. [Google Scholar] [CrossRef]
- Khaleel, S.; Zaher, H.; Raeid, S.N. A Novel Hybrid Harmony Search (HS) with War Strategy Optimization (WSO) for solving optimization problems. Mech. Contin. Math. Sci. 2024, 19, 27–46. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, P.; Wang, X.; Pan, Q. Three-way decision based island harmony search algorithm for robust flow-shop scheduling with uncertain processing times depicted by big data. Appl. Soft Comput. 2024, 162, 111842. [Google Scholar] [CrossRef]
- Li, J.; Xue, S.; Li, M.; Shi, X. Research on the performance of harmony search with local search algorithms for solving flexible job-shop scheduling problem. J. Intell. Fuzzy Syst. 2025, 48, 291–304. [Google Scholar] [CrossRef]
- Qu, B.Y.; Suganthan, P.N.; Das, S. A distance-based locally informed particle swarm model for multi-modal optimization. IEEE Trans. Evol. Comput. 2013, 17, 387–402. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, J.E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow shop sequencing problem. OMEGA Int. J. Manag. Sci. 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Ta, Q.C.; Pham, P.M. Integrated flowshop and vehicle routing problem based on tabu search algorithm. Int. J. Comput. (IJC) 2022, 43, 24–35. [Google Scholar]
- Zhou, Y.; Xu, W.; Fu, Z.H.; Zhou, M.C. Multi-neighborhood simulated annealing-based iterated local search for colored traveling salesman problems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16072–16082. [Google Scholar] [CrossRef]
- Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [Google Scholar] [CrossRef]
- Li, Y.Z.; Li, X.P.; Gupta, J.N.D. Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search. Expert Syst. Appl. 2015, 42, 1409–1417. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Victor, F.V.; Framinan, J.M. A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem. Int. J. Prod. Res. 2015, 53, 1111–1123. [Google Scholar]
- Pan, Y.; Gao, K.; Li, Z.; Wu, N. Solving biobjective distributed flow-shop scheduling problems with lot-streaming using an improved Jaya algorithm. IEEE Trans. Cybern. 2023, 53, 3818–3828. [Google Scholar] [CrossRef]
- Pan, Y.X.; Gao, K.Z.; Li, Z.W.; Wu, N.Q. A Novel Evolutionary Algorithm for Scheduling Distributed No-Wait Flow Shop Problems. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 3694–3704. [Google Scholar] [CrossRef]
Solution Structure | Job Sequence | ||
---|---|---|---|
Processing Factory 1 | Processing Factory 2 | Processing Factory 3 | |
{3,3,3} | {1,3,4} | {2,5,9} | {6,7,8} |
{4,2,3} | {1,3,4,9} | {2,5} | {6,7,8} |
Parameters (rh, rp) | MSavg | SD | Parameters (rh, rp) | MSavg | SD | Parameters (rh, rp) | MSavg | SD |
---|---|---|---|---|---|---|---|---|
(0.70, 0.10) | 4663 | 27.77 | (0.80, 0.10) | 4648 | 27.55 | (0.90, 0.10) | 4614 | 30.80 |
(0.70, 0.15) | 4659 | 28.63 | (0.80, 0.15) | 4658 | 33.93 | (0.90, 0.15) | 4626 | 35.52 |
(0.70, 0.20) | 4675 | 38.42 | (0.80, 0.20) | 4665 | 30.51 | (0.90, 0.20) | 4641 | 26.09 |
(0.70, 0.25) | 4679 | 35.49 | (0.80, 0.25) | 4665 | 28.00 | (0.90, 0.25) | 4652 | 29.08 |
(0.70, 0.30) | 4689 | 31.21 | (0.80, 0.30) | 4679 | 32.71 | (0.90, 0.30) | 4654 | 25.69 |
(0.70, 0.35) | 4687 | 30.32 | (0.80, 0.35) | 4680 | 31.18 | (0.90, 0.35) | 4663 | 28.29 |
(0.75, 0.10) | 4651 | 31.57 | (0.85, 0.10) | 4627 | 26.51 | (0.95, 0.10) | 4601 | 31.54 |
(0.75, 0.15) | 4659 | 41.57 | (0.85, 0.15) | 4644 | 28.50 | (0.95, 0.15) | 4614 | 38.53 |
(0.75, 0.20) | 4666 | 38.24 | (0.85, 0.20) | 4652 | 30.50 | (0.95, 0.20) | 4627 | 31.48 |
(0.75, 0.25) | 4672 | 33.12 | (0.85, 0.25) | 4661 | 31.96 | (0.95, 0.25) | 4636 | 38.94 |
(0.75, 0.30) | 4678 | 35.82 | (0.85, 0.30) | 4667 | 31.27 | (0.95, 0.30) | 4648 | 26.03 |
(0.75, 0.35) | 4689 | 31.06 | (0.85, 0.35) | 4673 | 33.33 | (0.95, 0.35) | 4651 | 37.61 |
Parameters (J, F, M) | HS | IOHS | Parameters (J, F, M) | HS | IOHS | Parameters (J, F, M) | HS | IOHS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSavge | SD | MSavge | SD | MSavge | SD | MSavge | SD | MSavge | SD | MSavge | SD | |||
(60, 2, 5) | 1847 | 59.67 | 1774 | 85.98 | (150, 5, 20) | 3285 | 22.13 | 2858 | 22.52 | (510, 3, 10) | 10,483 | 68.54 | 9442 | 72.12 |
(60, 2, 10) | 2318 | 43.87 | 2119 | 46.85 | (150, 10, 5) | 1203 | 26.24 | 965 | 26.41 | (510, 3, 20) | 11,782 | 52.25 | 10,365 | 67.35 |
(60, 2, 20) | 3102 | 39.85 | 2871 | 44.02 | (150, 10, 10) | 1618 | 15.82 | 1333 | 12.97 | (510, 5, 5) | 6049 | 39.70 | 5528 | 60.17 |
(60, 3, 5) | 1349 | 41.52 | 1237 | 53.40 | (150, 10, 20) | 2333 | 13.43 | 2009 | 15.18 | (510, 5, 10) | 6748 | 49.31 | 5837 | 44.61 |
(60, 3, 10) | 1751 | 36.66 | 1587 | 41.69 | (330, 2, 5) | 9159 | 110.49 | 8866 | 152.78 | (510, 5, 20) | 7913 | 50.26 | 6789 | 46.79 |
(60, 3, 20) | 2485 | 29.93 | 2284 | 31.09 | (330, 2, 10) | 10,007 | 101.23 | 9230 | 115.82 | (510, 10, 5) | 3351 | 36.66 | 2834 | 49.87 |
(60, 5, 5) | 937 | 26.17 | 817 | 21.86 | (330, 2, 20) | 11,374 | 73.20 | 10,195 | 55.13 | (510, 10, 10) | 3893 | 32.43 | 3200 | 31.85 |
(60, 5, 10) | 1308 | 16.21 | 1166 | 16.31 | (330, 3, 5) | 6314 | 70.25 | 5932 | 89.85 | (510, 10, 20) | 4846 | 17.14 | 4053 | 18.84 |
(60, 5, 20) | 1977 | 18.54 | 1810 | 20.67 | (330, 3, 10) | 7078 | 29.42 | 6322 | 69.01 | (600, 2, 5) | 16,347 | 149.29 | 15,977 | 214.21 |
(60, 10, 5) | 626 | 18.04 | 525 | 16.41 | (330, 3, 20) | 8237 | 39.13 | 7223 | 40.27 | (600, 2, 10) | 17,485 | 95.85 | 16,365 | 173.86 |
(60, 10, 10) | 962 | 18.71 | 838 | 15.31 | (330, 5, 5) | 4020 | 41.91 | 3615 | 64.45 | (600, 2, 20) | 19,138 | 63.66 | 17,279 | 82.79 |
(60, 10, 20) | 1593 | 28.57 | 1450 | 26.87 | (330, 5, 10) | 4651 | 27.79 | 3974 | 39.79 | (600, 3, 5) | 11,205 | 126.23 | 10,692 | 164.90 |
(150, 2, 5) | 4373 | 56.27 | 4214 | 96.23 | (330, 5, 20) | 5667 | 31.89 | 4857 | 31.03 | (600, 3, 10) | 12,137 | 76.40 | 11,008 | 115.43 |
(150, 2, 10) | 4907 | 50.04 | 4477 | 56.65 | (330, 10, 5) | 2280 | 21.91 | 1881 | 28.93 | (600, 3, 20) | 13,560 | 54.99 | 11,979 | 60.05 |
(150, 2, 20) | 5923 | 42.96 | 5293 | 51.22 | (330, 10, 10) | 2787 | 24.98 | 2264 | 21.67 | 600, 5, 5) | 7060 | 68.62 | 6478 | 103.95 |
(150, 3, 5) | 3037 | 42.75 | 2819 | 56.91 | (330, 10, 20) | 3634 | 11.06 | 3039 | 15.93 | (600, 5, 10) | 7806 | 48.11 | 6819 | 74.35 |
(150, 3, 10) | 3571 | 38.06 | 3137 | 45.88 | (510, 2, 5) | 14,136 | 150.29 | 13,810 | 221.83 | (600, 5, 20) | 9002 | 25.86 | 7745 | 32.39 |
(150, 3, 20) | 4502 | 44.06 | 3972 | 36.72 | (510, 2, 10) | 14,994 | 114.14 | 13,997 | 218.39 | (600, 10, 5) | 3863 | 29.49 | 3295 | 41.03 |
(150, 5, 5) | 1998 | 28.29 | 1733 | 31.89 | (510, 2, 20) | 16,599 | 63.02 | 14,947 | 71.85 | (600, 10, 10) | 4464 | 37.89 | 3687 | 27.79 |
(150, 5, 10) | 2465 | 35.25 | 2102 | 31.97 | (510, 3, 5) | 9528 | 66.37 | 9057 | 86.60 | (600, 10, 20) | 5437 | 24.15 | 4529 | 30.10 |
Parameters (J, F, M) | BSIG | Jaya | NEA | IOHS | Parameters (J, F, M) | BSIG | Jaya | NEA | IOHS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSavg | SD | MSavg | SD | MSavg | SD | MSavg | SD | MSavg | SD | MSavg | SD | MSavg | SD | MSavg | SD | ||
(60, 2, 5) | 1828 | 76.06 | 1782 | 81.81 | 1773 | 86.77 | 1774 | 85.98 | (330, 5, 5) | 3713 | 54.05 | 3641 | 56.15 | 3643 | 57.86 | 3615 | 64.45 |
(60, 2, 10) | 2249 | 45.19 | 2144 | 50.97 | 2100 | 44.35 | 2119 | 46.85 | (330, 5, 10) | 4181 | 41.45 | 4028 | 32.49 | 4024 | 29.86 | 3974 | 39.79 |
(60, 2, 20) | 3024 | 46.37 | 2897 | 41.33 | 2842 | 40.58 | 2871 | 44.02 | (330, 5, 20) | 5081 | 29.97 | 4894 | 24.74 | 4884 | 25.15 | 4857 | 31.03 |
(60, 3, 5) | 1248 | 51.13 | 1254 | 49.12 | 1236 | 54.23 | 1237 | 53.40 | (330, 10, 5) | 1973 | 31.82 | 1920 | 28.17 | 1910 | 29.77 | 1881 | 28.93 |
(60, 3, 10) | 1613 | 37.14 | 1618 | 43.27 | 1573 | 41.74 | 1587 | 41.69 | (330, 10, 10) | 2386 | 20.95 | 2308 | 19.54 | 2294 | 21.57 | 2264 | 21.67 |
(60, 3, 20) | 2318 | 38.24 | 2321 | 31.82 | 2261 | 29.95 | 2284 | 31.09 | (330, 10, 20) | 3180 | 24.70 | 3072 | 20.41 | 3059 | 19.05 | 3039 | 15.93 |
(60, 5, 5) | 828 | 23.70 | 841 | 23.85 | 810 | 24.20 | 817 | 21.86 | (510, 2, 5) | 13,899 | 244.89 | 13,811 | 220.65 | 13,816 | 217.14 | 13,810 | 221.83 |
(60, 5, 10) | 1182 | 15.36 | 1193 | 15.92 | 1153 | 15.48 | 1166 | 16.31 | (510, 2, 10) | 14,225 | 169.83 | 14,006 | 213.08 | 14,059 | 192.12 | 13,997 | 218.39 |
(60, 5, 20) | 1833 | 21.33 | 1845 | 20.33 | 1795 | 23.04 | 1810 | 20.67 | (510, 2, 20) | 15,393 | 78.56 | 15,016 | 81.52 | 15,028 | 68.95 | 14,947 | 71.85 |
(60, 10, 5) | 534 | 17.93 | 544 | 18.71 | 522 | 17.93 | 525 | 16.41 | (510, 3, 5) | 9160 | 86.36 | 9073 | 78.28 | 9087 | 78.83 | 9057 | 86.60 |
(60, 10, 10) | 855 | 15.43 | 867 | 17.02 | 832 | 16.06 | 838 | 15.31 | (510, 3, 10) | 9719 | 92.83 | 9503 | 71.43 | 9522 | 68.70 | 9442 | 72.12 |
(60, 10, 20) | 1472 | 23.32 | 1484 | 25.26 | 1438 | 24.18 | 1450 | 26.87 | (510, 3, 20) | 10,761 | 72.29 | 10,445 | 53.55 | 10,430 | 68.87 | 10,365 | 67.35 |
(150, 2, 5) | 4270 | 87.90 | 4215 | 95.43 | 4214 | 95.93 | 4214 | 96.23 | (510, 5, 5) | 5640 | 42.93 | 5556 | 55.63 | 5563 | 54.40 | 5528 | 60.17 |
(150, 2, 10) | 4655 | 45.47 | 4482 | 58.67 | 4469 | 60.62 | 4477 | 56.65 | (510, 5, 10) | 6085 | 38.79 | 5912 | 43.12 | 5926 | 46.02 | 5837 | 44.61 |
(150, 2, 20) | 5544 | 50.02 | 5295 | 56.45 | 5271 | 50.94 | 5293 | 51.22 | (510, 5, 20) | 7084 | 51.09 | 6853 | 48.51 | 6839 | 49.07 | 6789 | 46.79 |
(150, 3, 5) | 2897 | 64.82 | 2828 | 54.20 | 2819 | 57.42 | 2819 | 56.91 | (510, 10, 5) | 2940 | 41.05 | 2881 | 43.86 | 2883 | 43.27 | 2834 | 49.87 |
(150, 3, 10) | 3325 | 42.00 | 3176 | 40.52 | 3131 | 42.94 | 3137 | 45.88 | (510, 10, 10) | 3354 | 27.62 | 3258 | 34.22 | 3253 | 35.61 | 3200 | 31.85 |
(150, 3, 20) | 4164 | 48.92 | 4008 | 38.22 | 3954 | 35.18 | 3972 | 36.72 | (510, 10, 20) | 4234 | 22.19 | 4094 | 19.83 | 4087 | 14.27 | 4053 | 18.84 |
(150, 5, 5) | 1823 | 27.40 | 1765 | 30.48 | 1738 | 29.36 | 1733 | 31.89 | (600, 2, 5) | 16,042 | 198.69 | 15,980 | 213.34 | 15,987 | 213.33 | 15,977 | 214.21 |
(150, 5, 10) | 2225 | 38.66 | 2141 | 33.31 | 2099 | 32.04 | 2102 | 31.97 | (600, 2, 10) | 16,647 | 160.67 | 16,399 | 151.60 | 16,422 | 152.45 | 16,365 | 173.86 |
(150, 5, 20) | 3004 | 23.39 | 2887 | 26.52 | 2843 | 26.76 | 2858 | 22.52 | (600, 2, 20) | 17,773 | 60.58 | 17,379 | 56.36 | 17,397 | 56.30 | 17,279 | 82.79 |
(150, 10, 5) | 972 | 27.17 | 992 | 25.35 | 967 | 26.68 | 965 | 26.41 | (600, 3, 5) | 10,804 | 133.22 | 10,707 | 153.92 | 10,721 | 146.39 | 10,692 | 164.90 |
(150, 10, 10) | 1342 | 15.53 | 1365 | 14.41 | 1332 | 11.36 | 1333 | 12.97 | (600, 3, 10) | 11,299 | 106.39 | 11,065 | 97.58 | 11,106 | 87.11 | 11,008 | 115.43 |
(90, 10, 20) | 2024 | 16.33 | 2044 | 14.85 | 2003 | 16.29 | 2009 | 15.18 | (600, 3, 20) | 12,389 | 71.59 | 12,062 | 64.43 | 12,052 | 59.50 | 11,979 | 60.05 |
(330, 2, 5) | 8941 | 131.44 | 8867 | 151.42 | 8875 | 147.90 | 8866 | 152.78 | (600, 5, 5) | 6601 | 61.92 | 6512 | 83.50 | 6520 | 85.59 | 6478 | 103.95 |
(330, 2, 10) | 9451 | 117.41 | 9244 | 112.69 | 9255 | 106.97 | 9230 | 115.82 | (600, 5, 10) | 7065 | 37.97 | 6894 | 67.23 | 6904 | 58.24 | 6819 | 74.35 |
(330, 2, 20) | 10,575 | 62.94 | 10,217 | 69.41 | 10,240 | 60.97 | 10,195 | 55.13 | (600, 5, 20) | 8065 | 43.40 | 7808 | 34.97 | 7798 | 36.49 | 7745 | 32.39 |
(330, 3, 5) | 6036 | 99.49 | 5939 | 87.41 | 5947 | 88.49 | 5932 | 89.85 | (600, 10, 5) | 3402 | 36.13 | 3343 | 32.79 | 3348 | 38.13 | 3295 | 41.03 |
(330, 3, 10) | 6567 | 58.99 | 6363 | 54.33 | 6378 | 52.69 | 6322 | 69.01 | (600, 10, 10) | 3871 | 31.92 | 3763 | 28.02 | 3753 | 31.21 | 3687 | 27.79 |
(330, 3, 20) | 7530 | 48.89 | 7277 | 39.06 | 7254 | 39.22 | 7223 | 40.27 | (600, 10, 20) | 4742 | 32.70 | 4580 | 26.85 | 4569 | 28.40 | 4529 | 30.10 |
Parameters (J, F, M) | ARPD (%) | Parameters (J, F, M) | ARPD (%) | Parameters (J, F, M) | ARPD (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BSIG | Jaya | NEA | HHS | BSIG | Jaya | NEA | HHS | BSIG | Jaya | NEA | HHS | |||
(60, 2, 5) | 4.61 | 1.95 | 0.68 | 0.70 | (150, 5, 20) | 0.90 | 0.19 | 0.33 | 0.06 | (510, 3, 10) | 1.15 | 0.53 | 1.17 | 0.16 |
(60, 2, 10) | 8.63 | 3.05 | 0.30 | 1.25 | (150, 10, 5) | 3.12 | 0.23 | 0.78 | 0.06 | (510, 3, 20) | 0.79 | 0.49 | 0.77 | 0.18 |
(60, 2, 20) | 0.87 | 0.24 | 0.24 | 0.10 | (150, 10, 10) | 2.15 | 0.21 | 0.49 | 0.08 | (510, 5, 5) | 1.77 | 0.88 | 0.91 | 0.29 |
(60, 3, 5) | 2.14 | 0.13 | 0.22 | 0.04 | (150, 10, 20) | 1.52 | 0.19 | 0.37 | 0.07 | (510, 5, 10) | 1.43 | 0.66 | 1.90 | 0.18 |
(60, 3, 10) | 2.32 | 0.24 | 0.34 | 0.10 | (330, 2, 5) | 4.14 | 1.60 | 0.23 | 0.35 | (510, 5, 20) | 0.70 | 0.44 | 0.90 | 0.16 |
(60, 3, 20) | 1.61 | 0.17 | 0.26 | 0.06 | (330, 2, 10) | 2.31 | 0.63 | 0.60 | 0.20 | (510, 10, 5) | 0.82 | 0.54 | 2.14 | 0.20 |
(60, 5, 5) | 3.67 | 0.22 | 0.46 | 0.07 | (330, 2, 20) | 1.09 | 0.51 | 0.75 | 0.20 | (510, 10, 10) | 0.86 | 0.56 | 2.04 | 0.26 |
(60, 5, 10) | 2.78 | 0.26 | 0.40 | 0.09 | (330, 3, 5) | 2.62 | 0.84 | 0.46 | 0.27 | (510, 10, 20) | 0.56 | 0.35 | 1.08 | 0.15 |
(60, 5, 20) | 2.01 | 0.18 | 0.25 | 0.05 | (330, 3, 10) | 2.04 | 0.62 | 1.21 | 0.20 | (600, 2, 5) | 1.23 | 0.59 | 0.16 | 0.21 |
(60, 10, 5) | 4.72 | 0.25 | 0.52 | 0.09 | (330, 3, 20) | 1.10 | 0.52 | 0.77 | 0.19 | (600, 2, 10) | 1.04 | 0.55 | 0.50 | 0.18 |
(60, 10, 10) | 3.87 | 0.21 | 0.45 | 0.05 | (330, 5, 5) | 3.18 | 0.87 | 0.99 | 0.30 | (600, 2, 20) | 0.66 | 0.41 | 0.76 | 0.17 |
(60, 10, 20) | 2.66 | 0.17 | 0.45 | 0.07 | (330, 5, 10) | 2.28 | 0.76 | 1.62 | 0.28 | (600, 3, 5) | 1.31 | 0.83 | 0.51 | 0.30 |
(150, 2, 5) | 1.64 | 0.28 | 0.03 | 0.07 | (330, 5, 20) | 1.24 | 0.57 | 0.93 | 0.21 | (600, 3, 10) | 1.17 | 0.64 | 1.13 | 0.24 |
(150, 2, 10) | 1.33 | 0.87 | 0.23 | 0.28 | (330, 10, 5) | 1.31 | 0.59 | 1.98 | 0.20 | (600, 3, 20) | 0.69 | 0.49 | 0.73 | 0.20 |
(150, 2, 20) | 1.06 | 0.79 | 0.18 | 0.26 | (330, 10, 10) | 1.00 | 0.50 | 1.84 | 0.18 | (600, 5, 5) | 1.58 | 0.78 | 0.97 | 0.30 |
(150, 3, 5) | 0.62 | 0.39 | 0.09 | 0.15 | (330, 10, 20) | 0.99 | 0.37 | 0.93 | 0.12 | (600, 5, 10) | 1.29 | 0.71 | 1.57 | 0.24 |
(150, 3, 10) | 0.66 | 0.30 | 0.29 | 0.07 | (510, 2, 5) | 1.56 | 0.68 | 0.14 | 0.23 | (600, 5, 20) | 0.79 | 0.49 | 0.86 | 0.17 |
(150, 3, 20) | 0.55 | 0.19 | 0.22 | 0.07 | (510, 2, 10) | 1.29 | 0.66 | 0.71 | 0.27 | (600, 10, 5) | 1.45 | 0.77 | 2.00 | 0.25 |
(150, 5, 5) | 1.94 | 0.40 | 0.41 | 0.11 | (510, 2, 20) | 0.78 | 0.50 | 0.83 | 0.17 | (600, 10, 10) | 1.27 | 0.64 | 2.07 | 0.23 |
(150, 5, 10) | 1.44 | 0.22 | 0.32 | 0.07 | (510, 3, 5) | 1.39 | 0.55 | 0.55 | 0.13 | (600, 10, 20) | 0.67 | 0.41 | 1.14 | 0.15 |
Null Hypothesis | Test | Sig. | Decision | |
---|---|---|---|---|
1 | The median of differences between BSIG and IOHS equals 0 | Related samples Wilcoxon signed rank test | <0.001 | Reject the null hypothesis |
2 | The median of differences between Jaya and IOHS equals 0 | Related samples Wilcoxon signed rank test | <0.001 | Reject the null hypothesis |
3 | The median of differences between NEA and IOHS equals 0 | Related samples Wilcoxon signed rank test | <0.001 | Reject the null hypothesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Cheng, Y.; Li, Y. A Hybrid Harmony Search Algorithm for Distributed Permutation Flowshop Scheduling with Multimodal Optimization. Mathematics 2025, 13, 2640. https://doi.org/10.3390/math13162640
Shen H, Cheng Y, Li Y. A Hybrid Harmony Search Algorithm for Distributed Permutation Flowshop Scheduling with Multimodal Optimization. Mathematics. 2025; 13(16):2640. https://doi.org/10.3390/math13162640
Chicago/Turabian StyleShen, Hong, Yuwei Cheng, and Yazhi Li. 2025. "A Hybrid Harmony Search Algorithm for Distributed Permutation Flowshop Scheduling with Multimodal Optimization" Mathematics 13, no. 16: 2640. https://doi.org/10.3390/math13162640
APA StyleShen, H., Cheng, Y., & Li, Y. (2025). A Hybrid Harmony Search Algorithm for Distributed Permutation Flowshop Scheduling with Multimodal Optimization. Mathematics, 13(16), 2640. https://doi.org/10.3390/math13162640