Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes
Abstract
1. Introduction
2. Governing Equation
3. Methodology
3.1. Adomian Decomposition Method
3.2. Improved Adomian Decomposition Method
4. Results and Graphical Illustrations
- the exact solution is plotted as a solid yellow line,
- the ADM approximations are shown with a blue line,
- the IADM approximations are denoted by a red dotted curve.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Exact Value | ADM Approximation | IADM Approximation | ||
---|---|---|---|---|
References
- Singh, P.; Senthilnathan, K. Evolution of a solitary wave: Optical soliton, soliton molecule and soliton crystal. Discov. Appl. Sci. 2024, 6, 464. [Google Scholar] [CrossRef]
- Samina, S.; Munawar, M.; Ansari, A.R.; Jhangeer, A.; Wali, S. Nonlinear optical dynamics and complex wave structures in nonlinear dispersive media. Sci. Rep. 2025, 15, 15562. [Google Scholar] [CrossRef] [PubMed]
- Jandieri, V.; Khomeriki, R.; Berakdar, J.; Erni, D. Theory of soliton propagation in nonlinear photonic crystal waveguides. Opt. Express 2019, 27, 29558–29566. [Google Scholar] [CrossRef] [PubMed]
- Ostrovskaya, E.A.; Kivshar, Y.S. Nonlinear theory of soliton-induced waveguides. Opt. Lett. 1998, 23, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Zayed, E.M.E.; Alurrfi, K.A.E. Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method. Optik 2017, 144, 132–148. [Google Scholar] [CrossRef]
- Chabchoub, A.; Kibler, B.; Finot, C.; Millot, G.; Onorato, M.; Dudley, J.M.; Babanin, A.V. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys. 2015, 361, 490–500. [Google Scholar] [CrossRef]
- Wang, M.M.; Chen, Y. Dynamic behaviors of general n-solitons for the nonlocal generalized nonlinear Schrödinger equation. Nonlinear Dyn. 2021, 104, 2621–2638. [Google Scholar] [CrossRef]
- Younis, M.; Rehman, H.U.; Tahir, F. Optical Gaussons and dark solitons in directional couplers with spatiotemporal dispersion. Opt. Quantum Electron. 2018, 50, 422. [Google Scholar]
- Al-Shareef, A.; Al Qarni, A.A.; Al-Mohalbadi, S.; Bakodah, H.O. Soliton solutions and numerical treatment of the nonlinear Schrodinger’s equation using modified Adomian decomposition method. J. Appl. Math. Phys. 2016, 4, 2215–2232. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Xu, S.; Wu, Z.; He, J. The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1706–1722. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Tuszynski, J.A. Exact solutions of the multidimensional derivative nonlinear Schrodinger equation for many-body systems of criticality. J. Phys. A 1990, 23, 1171–1196. [Google Scholar] [CrossRef]
- Zhou, H.J.; Chen, Y. Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 2021, 6, 3437–3451. [Google Scholar] [CrossRef]
- Yıldırım, Y.; Biswas, A.; Asma, M.; Ekici, M.; Ntsime, B.P.; Zayed, E.M.E.; Moshokoa, S.P.; Alzahrani, A.K.; Belic, M.R. Optical soliton perturbation with Chen–Lee–Liu equation. Optik 2020, 220, 165177. [Google Scholar] [CrossRef]
- Kadkhoda, N.; Jafari, H. Analytical solutions of the Gerdjikov–Ivanov equation by using exp(−φ(ξ))-expansion method. Optik 2017, 139, 72–76. [Google Scholar] [CrossRef]
- Yang, J.; Jin, M.; Xin, X. Nonlocal symmetry and exact solutions of the (2+1)-dimensional Gerdjikov–Ivanov equation. Opt. Quantum Electron. 2024, 56, 707. [Google Scholar] [CrossRef]
- Kapoor, M.; Shah, N.A.; Weera, W. Analytical solution of time-fractional Schrödinger equations via Shehu Adomian Decomposition Method. AIMS Math. 2022, 7, 19562–19596. [Google Scholar] [CrossRef]
- El-Ajou, A.; Saadeh, R.; Dunia, M.A.; Qazza, A.; Al-Zhour, Z. A new approach in handling one-dimensional time-fractional Schrödinger equations. AIMS Math. 2024, 9, 10536–10560. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Yasar, E.; Babatin, M.M. Conservation laws for Gerdjikov–Ivanov equation in fiber optics and PCF. Optik 2017, 148, 209–214. Available online: http://refhub.elsevier.com/S0030-4026(17)31727-8/sbref0005 (accessed on 1 January 2025).
- Dai, H.H.; Fan, E.G. Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation. Chaos Solitons Fractals 2004, 22, 93–101. Available online: http://refhub.elsevier.com/S0030-4026(17)31727-8/sbref0015 (accessed on 20 July 2025). [CrossRef]
- Triki, H.; Alqahtani, R.T.; Zhou, Q.; Biswas, A. New envelope solitons for Gerdjikov-Ivanov model. Superlattices Microstruct. 2017, 111, 326–334. Available online: http://refhub.elsevier.com/S0030-4026(17)31727-8/sbref0055 (accessed on 20 July 2025). [CrossRef]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef]
- Okeke, A.A.; Tumba, P.; Gambo, J.J. The Use of Adomian Decomposition Method in Solving Second Order Autonomous and Non-autonomous Ordinary Differential Equations. Int. J. Math. Stat. Invent. 2019, 7, 2321–4759. [Google Scholar]
- Abassy, T.A. Improved Adomian decomposition method. Comput. Math. Appl. 2010, 59, 42–54. [Google Scholar] [CrossRef]
- Banaja, M.A.; Qarni, A.; Bakodah, H.; Zhou, Q.; Moshokoa, S.P.; Biswas, A. The investigate of optical solitons in cascaded system by improved Adomian decomposition scheme. Optik 2017, 130, 1107–1114. [Google Scholar] [CrossRef]
- Saburo, K.; Tetsuya, K. Solutions of a derivative nonlinear Schrödinger hierarchy and its similarity reduction. Glasgow Math. J. 2005, 47, 99–107. [Google Scholar]
- Guo, L.; Zhang, Y.; Xu, S. The higher order Rogu’e Wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 2014, 89, 240. [Google Scholar] [CrossRef]
- Yilmaz, H. Exact solutions of the Gerdjikov-Ivanov equation using Darboux transformations. J. Nonlinear Math. Phys. 2015, 22, 32–46. Available online: https://link.springer.com/article/10.1080/14029251.2015.996438 (accessed on 1 January 2025). [CrossRef]
- Zheng, L.X.; Yong, L.X.; Ying, Z.L.; Liang, Z.J. Exact solutions of Gerdjikov-Ivanov equation. Acta Phys. Sin. 2008, 51, 2031–2034. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method, with a Preface by Yves Cherruault, Fundamental Theories of Physics; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1994; Volume 1. [Google Scholar]
- Bakodah, H.O.; Al Qarni, A.; Banaja, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A. Bright and dark thirring optical solitons with improved Adomian decomposition method. Optik 2017, 130, 1115–1123. [Google Scholar] [CrossRef]
- Althrwi, F.; A Alshaery, A.; O Bakodah, H.; Nuruddeen, R.I. Supplementary optical solitonic expressions for Gerdjikov-Ivanov equations with three Kudryashov-based methods. Commun. Theor. Phys. 2024, 76, 125001. [Google Scholar] [CrossRef]
- Quarteroni, A.; Sacco, R.; Saleri, F. Parabolic and Hyperbolic Initial Boundary Value Problems. In Numerical Mathematics; Springer: New York, NY, USA, 2007; pp. 581–626. [Google Scholar]
- Abdelrazec, A.; Pelinovsky, D. Convergence of the Adomian decomposition method for initial-value problems. Numer. Methods Partial Differ. Equ. 2009, 27, 749–766. [Google Scholar] [CrossRef]
0.0001 |
ADM Error Values | IADM Error Values | ||
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althrwi, F.; Farhat, A.S.H.; AlQarni, A.A.; Bakodah, H.O.; Alshaery, A.A. Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes. Mathematics 2025, 13, 2686. https://doi.org/10.3390/math13162686
Althrwi F, Farhat ASH, AlQarni AA, Bakodah HO, Alshaery AA. Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes. Mathematics. 2025; 13(16):2686. https://doi.org/10.3390/math13162686
Chicago/Turabian StyleAlthrwi, Fadwa, Aisha S. H. Farhat, A. A. AlQarni, H. O. Bakodah, and A. A. Alshaery. 2025. "Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes" Mathematics 13, no. 16: 2686. https://doi.org/10.3390/math13162686
APA StyleAlthrwi, F., Farhat, A. S. H., AlQarni, A. A., Bakodah, H. O., & Alshaery, A. A. (2025). Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes. Mathematics, 13(16), 2686. https://doi.org/10.3390/math13162686