Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory
Abstract
1. Introduction
2. FG Porosity-Dependent Material Properties
2.1. Mathematical Formulation
2.2. Equations of Motion
3. Numerical Investigation
3.1. Example 1
3.2. Example 2
4. Conclusions
- The dynamic responses of the proposed structure are sensitive to the porosity and the distribution of materials.
- The two porosity distribution patterns have the same effect on the nondimensional fundamental frequencies of the BPFG nanoplate and have the same response in both uneven and even porosity distributions with varying the nonlocality parameter where the frequencies reduce by increasing the nonlocality in the two patterns.
- The vibrational frequencies of the structure are sensitive to the nonlocality, wave number, and thickness ratios. Therefore, developers should be careful when designing nanostructures and consider appropriate indexes power of the gradation laws and observe the porosity to ensure structural integrity because the FG structures are exposed to fractures and at risk of cracking due to increased porosities.
- The nondimensional frequencies of the BPFG nanoplate increase as the parameters of the modes and the thickness ratio increase, whereas the frequencies decrease as the parameters of the porosity, nonlocality, and gradient indexes increase.
- Moreover, dynamical responses of unidirectional and bidirectional porous functionally graded nanoplates behave the same with variations in the investigated parameters and (), but it can be seen that the UPFGP has high values of the frequency compared with the BPFGP for the equal parametric conditions in the two models.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.-K.; Truong-Phong Nguyen, T.; Vo, T.P.; Thai, H.-T. Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B Eng. 2015, 76, 273–285. [Google Scholar] [CrossRef]
- Vo, T.P.; Thai, H.-T.; Nguyen, T.-K.; Maheri, A.; Lee, J. Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 2014, 64, 12–22. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Kitipornchai, S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 2015, 133, 54–61. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Fadaee, M.; Atashipour, S.R. A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 2011, 53, 11–22. [Google Scholar] [CrossRef]
- Matsunaga, H. Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos. Struct. 2008, 82, 499–512. [Google Scholar] [CrossRef]
- Benachour, A.; Tahar, H.D.; Atmane, H.A.; Tounsi, A.; Ahmed, M.S. A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient. Compos. Part B Eng. 2011, 42, 1386–1394. [Google Scholar] [CrossRef]
- Belabed, Z.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.; Bég, O.A. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 2014, 60, 274–283. [Google Scholar] [CrossRef]
- Fellah, A.; Hassaine, N.; Touat, N.; Dahak, M.; Saimi, A. Study of crack’s effect on the natural frequencies of bi-directional functionally graded beam. Mech. Based Des. Struct. Mach. 2023, 50, 1080–1089. [Google Scholar] [CrossRef]
- Saimi, A.; Bensaid, I.; Fellah, A. Effect of crack presence on the dynamic and buckling responses of bidirectional functionally graded beams based on quasi-3D beam model and differential quadrature finite element method. Arch. Appl. Mech. 2023, 93, 3131–3151. [Google Scholar] [CrossRef]
- Ait Atmane, H.; Tounsi, A.; Bernard, F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 2017, 13, 71–84. [Google Scholar] [CrossRef]
- Al Rjoub, Y.S.; Hamad, A.G. Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J. Civ. Eng. 2017, 21, 792–806. [Google Scholar] [CrossRef]
- Thi, B.-P.; Minh, T.T.; Hoang, T.-P.; Long, N. Bending analysis of functionally graded beam with porosities resting on elastic foundation based on neutral surface position. J. Sci. Techno Civ. Eng. (STCE)—NUCE 2019, 13, 33–45. [Google Scholar] [CrossRef]
- Derikvand, M.; Farhatnia, F.; Hodges, D.H. Functionally graded thick sandwich beams with porous core: Buckling analysis via differential transform method. Mech. Based Des. Struct. Mach. 2023, 51, 3650–3677. [Google Scholar] [CrossRef]
- Nguyen, N.-D.; Nguyen, T.-N.; Nguyen, T.-K.; Vo, T.P. A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos. Struct. 2022, 282, 115095. [Google Scholar] [CrossRef]
- Karamanli, A.; Vo, T.P. A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Compos. Struct. 2021, 257, 113066. [Google Scholar] [CrossRef]
- Akbaş, Ş.D. Forced vibration analysis of functionally graded porous deep beams. Compos. Struct. 2018, 186, 293–302. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of buckling of a porous slab and its thermoelastic analogy. J. Appl. Mech. 1964, 31, 194–198. [Google Scholar] [CrossRef]
- Cong, P.H.; Chien, T.M.; Khoa, N.D.; Duc, N.D. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol. 2018, 77, 419–428. [Google Scholar] [CrossRef]
- Shahsavari, D.; Shahsavari, M.; Li, L.; Karami, B. A novel quasi-3Dhyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 2018, 72, 134–149. [Google Scholar] [CrossRef]
- Kitipornchai, S.; Chen, D.; Yang, J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 2017, 116, 656–665. [Google Scholar] [CrossRef]
- Rezaei, A.S.; Saidi, A.R.; Abrishamdari, M.; Pour Mohammadi, M.H. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach. Thin-Walled Struct. 2017, 120, 366–377. [Google Scholar] [CrossRef]
- Karamanli, A.; Aydogdu, M. Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mech. Based Des. Struct. Mach. 2020, 48, 164–191. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zu, J.W. Large-amplitude vibration of sigmoid functionally graded thin plates with porosities. Thin-Walled Struct. 2017, 119, 911–924. [Google Scholar] [CrossRef]
- Adiyaman, G. Free vibration analysis of a porous functionally graded beam using higher-order shear deformation theory. J. Struct. Eng. Appl. Mech. 2022, 5, 277–288. [Google Scholar] [CrossRef]
- Bensaid, I.; Saimi, A.; Civalek, O. Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect. Mech. Adv. Mater. Struct. 2024, 31, 1760–1776. [Google Scholar] [CrossRef]
- Demirkan, E.; Çelik, M.; Artan, R. Slope deflection method in nonlocal axially functionally graded tapered beams. Appl. Sci. 2023, 13, 4814. [Google Scholar] [CrossRef]
- Fernández-Sáez, J.; Zaera, R.; Loya, J.A.; Reddy, J.N. Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved. Int. J. Eng. Sci. 2016, 99, 107–116. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micromorphic materials with memory. Int. J. Eng. Sci. 1972, 10, 623–641. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlinear elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Nejad, M.Z.; Hadi, A. Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. Int. J. Eng. Sci. 2016, 106, 417–425. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Dabbagh, A. Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory. Waves Random Comp. Med. 2018, 30, 157–176. [Google Scholar] [CrossRef]
- Nejad, M.Z.; Hadi, A.; Rastgoo, A. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano beams based on nonlocal elasticity theory. Int. J. Eng. Sci. 2016, 103, 1–10. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.R.; Dabbagh, A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 2016, 107, 169–182. [Google Scholar] [CrossRef]
- Saffari, P.R.; Thongchom, C.; Jearsiripongkul, T.; Saffari, P.R.; Keawsawasvong, S.; Kongwat, S. Porosity-dependent wave propagation in multi-directional functionally graded nanoplate with nonlinear temperature-dependent characteristics on Kerr type substrate. Int. J. Thermofluids 2023, 20, 100408. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Shahrany, H.D. Frequency control of cross-ply magnetostrictive viscoelastic plates resting on Kerr-type elastic medium. Eur. Phys. J. Plus 2021, 136, 634. [Google Scholar] [CrossRef]
- Zhao, X.; Lee, Y.Y.; Liew, K.M. Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound. Vib. 2009, 319, 918–939. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Rokni Damavandi Taher, H.; Akhavan, H.; Omidi, M. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 2009, 34, 1276–1291. [Google Scholar] [CrossRef]
The Material | |||
---|---|---|---|
7800 | 210 | ||
Method | |||||
---|---|---|---|---|---|
0 | 1 | 4 | 10 | ||
Present | 0.0148 | 0.0115 | 0.0100 | 0.0095 | |
FSDT [37] | 0.0146 | 0.0112 | 0.0097 | 0.0093 | |
FSDT [4] | 0.0148 | 0.0113 | 0.0098 | 0.0094 | |
FSDT [38] | 0.0148 | 0.0115 | 0.0101 | 0.0096 | |
Present | 0.0576 | 0.0448 | 0.0388 | 0.0367 | |
HSDT [5] | 0.0577 | 0.0443 | 0.0381 | 0.0364 | |
FSDT [4] | 0.0577 | 0.0442 | 0.0382 | 0.0366 | |
FSDT [38] | 0.0577 | 0.0445 | 0.0383 | 0.0363 | |
Present | 0.2096 | 0.1641 | 0.1395 | 0.1305 | |
HSDT [5] | 0.2121 | 0.1640 | 0.1383 | 0.1306 | |
FSDT [4] | 0.2112 | 0.1631 | 0.1397 | 0.1324 | |
FSDT [38] | 0.2112 | 0.1650 | 0.1371 | 0.1304 |
0 | 0.1 | 0.2 | 0.3 | |||
---|---|---|---|---|---|---|
0 | 0.0576 | 0.0584 | 0.0594 | 0.0606 | ||
5 | 0.0383 | 0.0357 | 0.0310 | 0.0179 | ||
10 | 0.0367 | 0.0342 | 0.0295 | 0.0140 | ||
0.2096 | 0.2126 | 0.2162 | 0.2205 | |||
5 | 0.1372 | 0.1278 | 0.1114 | 0.0664 | ||
10 | 0.1305 | 0.1207 | 0.1032 | 0.0505 | ||
0.4182 | 0.4242 | 0.4313 | 0.4398 | |||
5 | 0.2692 | 0.2509 | 0.2196 | 0.1353 | ||
10 | 0.2544 | 0.2339 | 0.1988 | 0.1004 | ||
0.0526 | 0.0534 | 0.0543 | 0.0554 | |||
5 | 0.0350 | 0.0327 | 0.0284 | 0.0164 | ||
10 | 0.0336 | 0.0312 | 0.0269 | 0.0128 | ||
0.1567 | 0.1589 | 0.1616 | 0.1648 | |||
5 | 0.1025 | 0.0956 | 0.0832 | 0.0496 | ||
10 | 0.0976 | 0.0901 | 0.0772 | 0.0378 | ||
0.2510 | 0.2545 | 0.2588 | 0.2640 | |||
5 | 0.1615 | 0.1506 | 0.1318 | 0.0812 | ||
10 | 0.1527 | 0.1404 | 0.1193 | 0.0603 | ||
0.0346 | 0.0351 | 0.0356 | 0.0364 | |||
5 | 0.0230 | 0.0215 | 0.0186 | 0.0108 | ||
10 | 0.0221 | 0.0205 | 0.0177 | 0.0084 | ||
0.0736 | 0.0747 | 0.0759 | 0.0774 | |||
5 | 0.0482 | 0.0449 | 0.0391 | 0.0233 | ||
10 | 0.0458 | 0.0424 | 0.0363 | 0.0177 | ||
0.1015 | 0.1029 | 0.1046 | 0.1067 | |||
5 | 0.0653 | 0.0609 | 0.0533 | 0.0328 | ||
10 | 0.0617 | 0.0567 | 0.0482 | 0.0244 | ||
0.0236 | 0.0240 | 0.0244 | 0.0249 | |||
5 | 0.0157 | 0.0147 | 0.0127 | 0.0074 | ||
10 | 0.0151 | 0.0140 | 0.0121 | 0.0058 | ||
0.0460 | 0.0467 | 0.0475 | 0.0484 | |||
5 | 0.0301 | 0.0281 | 0.0245 | 0.0146 | ||
10 | 0.0287 | 0.0265 | 0.0227 | 0.0111 | ||
0.0621 | 0.0629 | 0.0640 | 0.0653 | |||
5 | 0.0399 | 0.0372 | 0.0326 | 0.0201 | ||
10 | 0.0377 | 0.0347 | 0.0295 | 0.0149 |
0 | 0.1 | 0.2 | |||
---|---|---|---|---|---|
0 | 3 | 0.0731 | 0.0717 | 0.0521 | |
5 | 0.0700 | 0.0676 | 0.0394 | ||
10 | 0.0666 | 0.0635 | 0.0477 | ||
5 | 0.0722 | 0.0706 | 0.0560 | ||
5 | 0.0691 | 0.0667 | 0.0474 | ||
10 | 0.0658 | 0.0627 | 0.0396 | ||
10 | 0.0713 | 0.0695 | 0.0544 | ||
5 | 0.0681 | 0.0655 | 0.0460 | ||
10 | 0.0647 | 0.0614 | 0.0383 | ||
3 | 0.0663 | 0.0649 | 0.0465 | ||
5 | 0.0634 | 0.0612 | 0.0352 | ||
10 | 0.0603 | 0.0574 | 0.0427 | ||
5 | 0.0656 | 0.0641 | 0.0504 | ||
5 | 0.0627 | 0.0605 | 0.0427 | ||
10 | 0.0598 | 0.0569 | 0.0356 | ||
10 | 0.0650 | 0.0634 | 0.0497 | ||
5 | 0.0621 | 0.0598 | 0.0420 | ||
10 | 0.0591 | 0.0560 | 0.0349 | ||
3 | 0.0424 | 0.0411 | 0.0317 | ||
5 | 0.0407 | 0.0391 | 0.0218 | ||
10 | 0.0387 | 0.0366 | 0.0266 | ||
5 | 0.0424 | 0.0411 | 0.0317 | ||
5 | 0.0405 | 0.0389 | 0.0268 | ||
10 | 0.0385 | 0.0365 | 0.0224 | ||
10 | 0.0427 | 0.0416 | 0.0324 | ||
5 | 0.0407 | 0.0391 | 0.0274 | ||
10 | 0.0387 | 0.0367 | 0.0228 | ||
3 | 0.0289 | 0.0281 | 0.0192 | ||
5 | 0.0276 | 0.0264 | 0.0146 | ||
10 | 0.0262 | 0.0247 | 0.0178 | ||
5 | 0.0288 | 0.0279 | 0.0213 | ||
5 | 0.0275 | 0.0264 | 0.0181 | ||
10 | 0.0262 | 0.0247 | 0.0151 | ||
10 | 0.0292 | 0.0284 | 0.0221 | ||
5 | 0.0278 | 0.0267 | 0.0187 | ||
10 | 0.0264 | 0.0250 | 0.0156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shahrany, H.D. Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory. Mathematics 2025, 13, 2688. https://doi.org/10.3390/math13162688
El-Shahrany HD. Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory. Mathematics. 2025; 13(16):2688. https://doi.org/10.3390/math13162688
Chicago/Turabian StyleEl-Shahrany, Hela D. 2025. "Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory" Mathematics 13, no. 16: 2688. https://doi.org/10.3390/math13162688
APA StyleEl-Shahrany, H. D. (2025). Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory. Mathematics, 13(16), 2688. https://doi.org/10.3390/math13162688