Return Level Prediction with a New Mixture Extreme Value Model
Abstract
1. Introduction
- ✓
- The EP-based mixture EVT models that generalized GP models are introduced.
- ✓
- The threshold selection process in the mixture EVT model is performed with two approaches: maximization of likelihood and test statistics of the goodness-of-fit test.
- ✓
- The proposed approach is compared with GP-based models on the earthquake data.
- ✓
- The GammaEP web tool is developed to make the implementation of the proposed model easy for users.
2. Mixture EVT Models
3. Mixture Models Based on the Exponentiated Pareto
3.1. Gamma-EP
3.2. Weibull-EP
3.3. Log-Normal-EP
3.4. Return Level Estimation
4. Estimation
4.1. Threshold Selection
- Problem 1: When the sample size is insufficient, the optim function obtains parameter estimates outside of the parameter domains.
- Solution: The constrOptim function is used, and the parameter domains are defined as constraints in the optimization step.
- Problem 2: In small samples, the constrOptim function can also get stuck at local minima values as in the optim function.
- Solution: To avoid this situation, two different threshold-selection methods are used together.
4.2. Simulation
5. Application
5.1. Data
5.2. Comparison of the Models
- 1.
- The highest recorded earthquake magnitude is anticipated to exceed 4.375 once every 50 months.
- 2.
- The highest recorded earthquake magnitude is anticipated to exceed 4.897 once every 100 months.
- 3.
- The highest recorded earthquake magnitude is anticipated to exceed 7.574 once every 1000 months.
6. GammaEP Software
6.1. Upload Data
6.2. Map View
6.3. Threshold Selection
6.4. Parameter Estimates
6.5. Plots
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pisarenko, V.F.; Sornette, D. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure Appl. Geophys. 2003, 160, 2343–2364. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, H. Application of generalized Pareto distribution for modeling aleatory variability of ground motion. Nat. Hazards 2021, 108, 2971–2989. [Google Scholar] [CrossRef]
- Qian, X.; Wang, F.; Sheng, S. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution. Acta Seismol. Sin. 2013, 35, 341–350. [Google Scholar]
- Ma, N.; Bai, Y.; Meng, S. Return period evaluation of the largest possible earthquake magnitudes in mainland China based on extreme value theory. Sensors 2021, 21, 3519. [Google Scholar] [CrossRef]
- Yegulalp, T.M.; Kuo, J.T. Statistical prediction of the occurrence of maximum magnitude earthquakes. Bull. Seismol. Soc. Am. 1974, 64, 393–414. [Google Scholar] [CrossRef]
- Fedotenkov, I. A review of more than one hundred Pareto-tail index estimators. Statistica 2020, 80, 245–299. [Google Scholar]
- Cheng, T.; Peng, X.; Choiruddin, A.; He, X.; Chen, K. Environmental extreme risk modeling via sub-sampling block maxima. arXiv 2025, arXiv:2506.14556. [Google Scholar] [CrossRef]
- Walshaw, D.; Anderson, C.W. A model for extreme wind gusts. J. R. Stat. Soc. Ser. C Appl. Stat. 2000, 49, 499–508. [Google Scholar] [CrossRef]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events: For Insurance and Finance; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 33. [Google Scholar]
- McNeil, A.J.; Frey, R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. J. Empir. Financ. 2000, 7, 271–300. [Google Scholar] [CrossRef]
- Pickands, J. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar] [CrossRef]
- Tekin, S.; Altun, E.; Can, T. A new statistical model for extreme rainfall: POT-KumGP. Earth Sci. Inform. 2021, 14, 765–775. [Google Scholar] [CrossRef]
- Collier, A.J. Extreme Value Analysis of Non-Stationary Processes: A Study of Extreme Rainfall Under Changing Climate. Doctoral Dissertation, Newcastle University, Tyne, UK, 2011. [Google Scholar]
- Behrens, C.; Lopes, H.F.; Gamerman, D. Bayesian analysis of extreme events with threshold estimation. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2004, 53, 61–76. [Google Scholar] [CrossRef]
- Frigessi, A.; Haug, O.; Rue, H. A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 2002, 5, 219–235. [Google Scholar] [CrossRef]
- MacDonald, A.; Scarrott, C.J.; Lee, D.; Darlow, B.; Reale, M.; Russell, G. A flexible extreme value mixture model. Comput. Stat. Data Anal. 2011, 55, 2137–2157. [Google Scholar] [CrossRef]
- Nascimento, F.F.; Gamerman, D.; Lopes, H.F. A semiparametric Bayesian approach to extreme value estimation. Stat. Comput. 2012, 22, 661–675. [Google Scholar] [CrossRef]
- Boldi, M.O.; Davison, A.C. A mixture model for multivariate extremes. J. R. Stat. Soc. Ser. B Stat. Methodol. 2007, 69, 217–229. [Google Scholar] [CrossRef]
- Hu, Y.; Scarrott, C. evmix: An R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation. J. Stat. Softw. 2018, 84, 1–27. [Google Scholar] [CrossRef]
- Kiran, K.G.; Srinivas, V.V. A Mahalanobis distance-based automatic threshold selection method for peaks over threshold model. Water Resour. Res. 2021, 57, e2020WR027534. [Google Scholar] [CrossRef]
- Majid, M.H.A.; Ibrahim, K. Composite pareto distributions for modelling household income distribution in Malaysia. Sains Malays. 2021, 50, 2047–2058. [Google Scholar] [CrossRef]
- Sigauke, C.; Ravele, T.; Jhamba, L. Extremal Dependence Modelling of Global Horizontal Irradiance with Temperature and Humidity: An Application Using South African Data. Energies 2022, 15, 5965. [Google Scholar] [CrossRef]
- Balkema, A.A.; De Haan, L. Residual life time at great age. Ann. Probab. 1974, 2, 792–804. [Google Scholar] [CrossRef]
- Scarrott, C.; MacDonald, A. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT-Stat. J. 2012, 10, 33–60. [Google Scholar]
- Li, Y.; Tang, N.; Jiang, X. Bayesian approaches for analyzing earthquake catastrophic risk. Insur. Math. Econ. 2016, 68, 110–119. [Google Scholar] [CrossRef]
- Cabras, S.; Castellanos, M.E. A Bayesian approach for estimating extreme quantiles under a semiparametric mixture model. ASTIN Bull. J. IAA 2011, 41, 87–106. [Google Scholar]
- Carreau, J.; Bengio, Y. A hybrid Pareto model for asymmetric fat-tailed data: The univariate case. Extremes 2009, 12, 53–76. [Google Scholar] [CrossRef]
- Solari, S.; Losada, M.A. A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, P.L.; Gupta, R.D. Modeling failure time data by Lehman alternatives. Commun. Stat.-Theory Methods 1998, 27, 887–904. [Google Scholar] [CrossRef]
- Afify, W.M. On estimation of the exponentiated Pareto distribution under different sample schemes. Stat. Methodol. 2010, 7, 77–83. [Google Scholar] [CrossRef]
Sample Sizes | Metrics | Likelihood Approach | KS Approach | ||||||
---|---|---|---|---|---|---|---|---|---|
50 | Bias | 0.318 | −0.056 | 0.411 | 5.961 | 0.282 | 0.183 | 0.355 | 1.120 |
MSE | 0.565 | 0.644 | 0.418 | 722.488 | 0.669 | 1.526 | 0.288 | 4.632 | |
100 | Bias | 0.082 | 0.016 | 0.258 | 4.742 | 0.063 | 0.085 | 0.224 | 0.906 |
MSE | 0.168 | 0.279 | 0.254 | 516.347 | 3.384 | 0.168 | 0.437 | 3.558 | |
200 | Bias | 0.073 | −0.018 | 0.089 | 0.899 | 0.051 | 0.021 | 0.105 | 0.395 |
MSE | 0.069 | 0.087 | 0.039 | 2.201 | 0.063 | 0.093 | 0.048 | 0.323 | |
500 | Bias | −0.008 | −0.002 | 0.025 | 0.421 | −0.006 | −0.003 | 0.072 | 0.274 |
MSE | 0.015 | 0.028 | 0.007 | 1.736 | 0.016 | 0.030 | 0.019 | 0.168 |
Models | Parameters | ||||
---|---|---|---|---|---|
Gamma-GPD | 17.260 | 0.156 | 0.949 | −0.197 | 3.383 |
() | 1.698 | 0.016 | 0.266 | 0.188 | - |
Weibull-GPD | 5.203 | 2.898 | 0.957 | −0.205 | 3.383 |
() | 0.289 | 0.038 | 0.262 | 0.182 | - |
Log-normal-GPD | 0.960 | 0.251 | 0.938 | −0.186 | 3.383 |
() | 0.016 | 0.012 | 0.265 | 0.193 | - |
Gamma-EP | 13.263 | 0.210 | 3.587 | 1.271 | 2.928 |
() | 1.574 | 0.027 | 0.448 | 0.176 | - |
Weibull-EP | 5.022 | 2.914 | 4.060 | 4.261 | 3.528 |
() | 0.271 | 0.039 | 0.874 | 1.656 | - |
Log-normal-EP | 0.997 | 0.296 | 3.587 | 1.271 | 2.928 |
() | 0.021 | 0.018 | 0.448 | 0.176 | - |
Models | AIC | BIC | KS | p | |
---|---|---|---|---|---|
Gamma-GPD | 259.184 | 526.368 | 527.980 | 0.068 | 0.190 |
Weibull-GPD | 253.507 | 515.014 | 516.626 | 0.049 | 0.575 |
Lognormal-GPD | 263.508 | 535.017 | 536.629 | 0.081 | 0.073 |
Gamma-EP | 253.034 | 514.067 | 515.680 | 0.034 | 0.935 |
Weibull-EP | 254.252 | 516.504 | 518.117 | 0.039 | 0.834 |
Log-normal-EP | 253.177 | 514.354 | 515.967 | 0.036 | 0.889 |
Return Periods | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 100 | 1000 |
---|---|---|---|---|---|---|---|---|---|
Return levels | 2.717 | 3.194 | 3.479 | 3.816 | 4.051 | 4.237 | 4.375 | 4.897 | 7.574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altun, E.; Alqifari, H.N.; Söyler, K. Return Level Prediction with a New Mixture Extreme Value Model. Mathematics 2025, 13, 2705. https://doi.org/10.3390/math13172705
Altun E, Alqifari HN, Söyler K. Return Level Prediction with a New Mixture Extreme Value Model. Mathematics. 2025; 13(17):2705. https://doi.org/10.3390/math13172705
Chicago/Turabian StyleAltun, Emrah, Hana N. Alqifari, and Kadir Söyler. 2025. "Return Level Prediction with a New Mixture Extreme Value Model" Mathematics 13, no. 17: 2705. https://doi.org/10.3390/math13172705
APA StyleAltun, E., Alqifari, H. N., & Söyler, K. (2025). Return Level Prediction with a New Mixture Extreme Value Model. Mathematics, 13(17), 2705. https://doi.org/10.3390/math13172705