Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand
Abstract
1. Introduction
2. Theoretical Background
2.1. Kriging with an External Drift
2.2. Dual Kriging
2.3. The Relationship Between the Positive Definite Matrix and the Completely Monotone Function
- 1.
- is positive definite (denoted by ) if
- 2.
- is strictly positive definite (denoted by ) if
- 1.
- ;
- 2.
- for all and .
3. A New Approach to Nonlinear Trend Modeling in Dual Kriging
- In addition, the matrix has full column rank.
4. Nonsingularity of the Dual Kriging System
5. Application to PM2.5 Spatial Estimation in Northern Thailand
5.1. Study Area and Data Description
5.2. Performance Metrics and Quantitative Evaluation
5.3. The Distance Correlation Coefficient
5.4. Results
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OK | Ordinary kriging |
KED | Kriging with an external drift |
DK | Dual kriging |
RBF | Radial basis function |
GRBFs | Gaussian radial basis functions |
GA | Genetic algorithm |
DCC | Distance correlation coefficient |
MAPE | Mean absolute percentage error |
MSE | Mean squared error |
RMSE | Root mean square error |
OLS | Ordinary least squares |
PCD | Pollution Control Department |
TMD | Thai Meteorological Department |
DK–POLY | Dual kriging with a second-order polynomial trend |
DK–RBFP | Dual kriging with a trend function based on the GRBF and a |
first-order polynomial | |
DK–RBFPGA | DK–RBFP with parameters estimated using a genetic algorithm |
References
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Chaveesuk, R.; Smith, A.E. Dual Kriging: An exploratory use in economic metamodeling. Eng. Econ. 2005, 50, 247–271. [Google Scholar] [CrossRef]
- Erdogan Erten, G.; Yavuz, M.; Deutsch, C.V. Combination of machine learning and kriging for spatial estimation of geological attributes. Nat. Resour. Res. 2022, 31, 191–213. [Google Scholar] [CrossRef]
- Gravier, V.; Trochu, F.; Aubin, C.-É.; Plouznikoff, A.; Ozell, B. Interpolation by dual kriging of a moving flow front and conservation of the fluid mass. In Fourth Canada-Japan Workshop on Composites; CRC Press: Boca Raton, FL, USA, 2020; pp. 255–262. [Google Scholar]
- He, Y.; Sun, J.; Song, P.; Wang, X. Dual Kriging assisted efficient global optimization of expensive problems with evaluation failures. Aerosp. Sci. Technol. 2020, 105, 106006. [Google Scholar] [CrossRef]
- Trochu, F.; Vernet, N.; Sun, Y.; Echaabi, J.; Makradi, A.; Belouettar, S. Hybrid twin models of fiber compaction for composite manufacturing based on dual kriging. Int. J. Mater. Form. 2022, 15, 36. [Google Scholar] [CrossRef]
- Kongsanun, C.; Chutsagulprom, N.; Moonchai, S. Spatio-temporal dual kriging with adaptive coefficient drift function. Mathematics 2024, 12, 400. [Google Scholar] [CrossRef]
- Snepvangers, J.J.J.C.; Heuvelink, G.B.M.; Huisman, J.A. Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 2003, 112, 253–271. [Google Scholar] [CrossRef]
- Freier, L.; Wiechert, W.; von Lieres, E. Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics. Eng. Life Sci. 2017, 17, 916–922. [Google Scholar] [CrossRef]
- Baisad, K.; Chutsagulprom, N.; Moonchai, S. A non-linear trend function for kriging with external drift using least squares support vector regression. Mathematics 2023, 11, 4799. [Google Scholar] [CrossRef]
- Rusu, C.; Rusu, V. Radial basis functions versus geostatistics in spatial interpolations. In IFIP International Conference on Artificial Intelligence in Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2006; pp. 119–128. [Google Scholar]
- Majdisova, Z.; Skala, V. Radial basis function approximations: Comparison and applications. Appl. Math. Model. 2017, 51, 728–743. [Google Scholar] [CrossRef]
- Mai-Duy, N.; Tran-Cong, T. Approximation of function and its derivatives using radial basis function networks. Appl. Math. Model. 2003, 27, 197–220. [Google Scholar] [CrossRef]
- Arora, G.; Bala, K.; Emadifar, H.; Khademi, M. A review of radial basis function with applications explored. J. Egypt. Math. Soc. 2023, 31, 1–14. [Google Scholar] [CrossRef]
- Kawano, S.; Konishi, S. Nonlinear regression modeling via regularized Gaussian basis functions. Bull. Inform. Cybernet. 2007, 3, 83–96. [Google Scholar] [CrossRef]
- Karimi, N.; Kazem, S.; Ahmadian, D.; Adibi, H.; Ballestra, L.V. On a generalized Gaussian radial basis function: Analysis and applications. Eng. Anal. Bound. Elem. 2020, 112, 46–57. [Google Scholar] [CrossRef]
- Jasek, K.; Pasternak, M.; Miluski, W.; Bugaj, J.; Grabka, M. Application of Gaussian radial basis functions for fast spatial imaging of ground penetration radar data obtained on an irregular grid. Electronics 2021, 10, 2965. [Google Scholar] [CrossRef]
- Shawe-Taylor, J.; Sun, S. Kernel methods and support vector machines. In Academic Press Library in Signal Processing; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 857–881. [Google Scholar]
- Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–66. [Google Scholar]
- Orr, M.J.L. Introduction to Radial Basis Function Networks; Technical Report; Center for Cognitive Science, University of Edinburgh: Edinburgh, UK, 1996. [Google Scholar]
- Rippa, S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 1999, 11, 193–210. [Google Scholar] [CrossRef]
- Fasshauer, G.E.; Zhang, J.G. On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 2007, 45, 345–368. [Google Scholar] [CrossRef]
- Wang, J.G.; Liu, G.R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Methods Appl. Mech. Eng. 2002, 191, 2611–2630. [Google Scholar] [CrossRef]
- Schaback, R. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 1995, 3, 251–264. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Shi, T.; Meng, S. Optimization of nonlinear functions based on improved genetic algorithm. In Proceedings of the Third International Conference on Computer Science and Communication Technology (ICCSCT 2022); SPIE: Bellingham, WA, USA, 2022; Volume 12506, pp. 272–277. [Google Scholar]
- Emmanuel, S.; Okoye, I.; Ezenweke, C.; Shobanke, D.; Adeniyi, I. Estimating nonlinear regression parameters using particle swarm optimization and genetic algorithm. FUDMA J. Sci. 2022, 6, 202–213. [Google Scholar] [CrossRef]
- Onoghojobi, B.; Olewuezi, N.P.; Omojarabi, O. Nonlinear regression parameter estimates using genetic algorithms. J. Niger. Assoc. Math. Phys. 2023, 65, 173–178. [Google Scholar]
- Sang, N.D. The genetic algorithm and its application in calculating the kinetic parameters of the thermoluminescence curve. In Genetic Algorithms-Theory, Design and Programming; IntechOpen: London, UK, 2024. [Google Scholar]
- Montero, J.-M.; Fernández-Avilés, G.; Mateu, J. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zimmerman, D.L.; Stein, M.; Gelfand, A.E.; Diggle, P.J. Classical geostatistical methods. In Handbook of Spatial Statistics; CRC Press: Boca Raton, FL, USA, 2010; pp. 29–44. [Google Scholar]
- Myers, D.E. Smoothing and interpolation with radial basis functions. WIT Trans. Model. Simul. 2024, 23. [Google Scholar]
- Cheney, W.; Light, W. A Course in Approximation Theory; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1999. [Google Scholar]
- Karim, M.A.; Jan, R.M. Matrix Algebra; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Gaspar, B.; Teixeira, A.P.; Soares, C.G. Assessment of the efficiency of kriging surrogate models for structural reliability analysis. Probabilistic Eng. Mech. 2014, 37, 24–34. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Regression and Kriging metamodels with their experimental designs in simulation: A review. Eur. J. Oper. Res. 2017, 256, 1–16. [Google Scholar] [CrossRef]
- Lark, R.M.; Webster, R. Geostatistical mapping of geomorphic variables in the presence of trend. Earth Surf. Process. Landf. 2006, 31, 862–874. [Google Scholar] [CrossRef]
- Yoshida, R. Linear Algebra and Its Applications with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Barua, T.; Hiran, K.K.; Jain, R.K.; Doshi, R. Machine Learning with Python; Walter de Gruyter GmbH & Co., KG: Berlin, Germany, 2024. [Google Scholar]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere 2018, 9, 449. [Google Scholar] [CrossRef]
- Jainontee, K.; Pongkiatkul, P.; Wang, Y.-L.; Weng, R.J.F.; Lu, Y.-T.; Wang, T.-S.; Chen, W.-K. Strategy design of PM2.5 controlling for northern Thailand. Aerosol Air Qual. Res. 2023, 23, 220432. [Google Scholar] [CrossRef]
- Mueller, W.; Loh, M.; Vardoulakis, S.; Johnston, H.J.; Steinle, S.; Precha, N.; Kliengchuay, W.; Tantrakarnapa, K.; Cherrie, J.W. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ. Health 2020, 19, 77. [Google Scholar] [CrossRef]
- Thongtip, S.; Srivichai, P.; Chaitiang, N.; Tantrakarnapa, K. The influence of air pollution on disease and related health problems in northern Thailand. Sains Malays. 2022, 51, 1993–2002. [Google Scholar] [CrossRef]
- Goud, M.P.; Magadum, A. Artificial Intelligence and Machine Learning; RK Publication: Jalandhar, India, 2024. [Google Scholar]
- Carter, N. Data Science for Mathematicians; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Szekely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing independence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Hou, J.; Ye, X.; Feng, W.; Zhang, Q.; Han, Y.; Liu, Y.; Li, Y.; Wei, Y. Distance correlation application to gene co-expression network analysis. BMC Bioinform. 2022, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Ratnasingam, S.; Muñoz-Lopez, J. Distance correlation-based feature selection in random forest. Entropy 2023, 25, 1250. [Google Scholar] [CrossRef] [PubMed]
- Rui, D.; Hui, J. High-accuracy transient fuel consumption model based on distance correlation analysis. Fuel 2022, 321, 123927. [Google Scholar] [CrossRef]
- Park, S.; Moon, J.; Jung, S.; Rho, S.; Hwang, E. Explainable influenza forecasting scheme using DCC-based feature selection. Data Knowl. Eng. 2024, 149, 102256. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, J.; Zhou, Y.; Ji, X. Prediction of PM2.5 with a piecewise affine model considering spatial-temporal correlation. J. Intell. Fuzzy Syst. 2024, 46, 9525–9542. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, X.; Shao, X. Testing mutual independence in high dimension via distance covariance. J. R. Stat. Soc. Ser. B Stat. Methodol. 2018, 80, 455–480. [Google Scholar] [CrossRef]
- Martínez-Gómez, E.; Richards, M.T.; Richards, D.S.P. Distance correlation methods for discovering associations in large astrophysical databases. Astrophys. J. 2014, 781, 39. [Google Scholar] [CrossRef]
- Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023, 9, e14261. [Google Scholar] [CrossRef]
- Inlaung, K.; Chotamonsak, C.; Macatangay, R.; Surapipith, V. Assessment of transboundary PM2.5 from biomass burning in northern Thailand using the WRF-chem model. Toxics 2024, 12, 462. [Google Scholar] [CrossRef]
- Pollution Control Department. Air and Noise Pollution Situation and Management in Thailand 2024; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2024. Available online: https://www.pcd.go.th/publication/36289/ (accessed on 5 August 2025). (In Thai)
Auxiliary Variable | Month | Week 1 | Week 2 | Week 3 | Week 4 | Average |
---|---|---|---|---|---|---|
Air Pressure | March 2023 | 0.522 | 0.470 | 0.449 | 0.414 | 0.464 |
April 2023 | 0.458 | 0.393 | 0.338 | 0.737 | 0.481 | |
Relative Humidity | March 2023 | 0.424 | 0.440 | 0.401 | 0.345 | 0.402 |
April 2023 | 0.428 | 0.490 | 0.417 | 0.477 | 0.453 |
Auxiliary Variable | Month | Week 1 | Week 2 | Week 3 | Week 4 | Average |
---|---|---|---|---|---|---|
Air Pressure | March 2024 | 0.446 | 0.511 | 0.604 | 0.574 | 0.534 |
April 2024 | 0.368 | 0.542 | 0.459 | 0.440 | 0.452 | |
Relative Humidity | March 2024 | 0.546 | 0.587 | 0.762 | 0.905 | 0.700 |
April 2024 | 0.744 | 0.499 | 0.424 | 0.445 | 0.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utudee, S.; Chanthorn, P.; Moonchai, S. Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand. Mathematics 2025, 13, 2811. https://doi.org/10.3390/math13172811
Utudee S, Chanthorn P, Moonchai S. Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand. Mathematics. 2025; 13(17):2811. https://doi.org/10.3390/math13172811
Chicago/Turabian StyleUtudee, Somlak, Pharunyou Chanthorn, and Sompop Moonchai. 2025. "Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand" Mathematics 13, no. 17: 2811. https://doi.org/10.3390/math13172811
APA StyleUtudee, S., Chanthorn, P., & Moonchai, S. (2025). Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand. Mathematics, 13(17), 2811. https://doi.org/10.3390/math13172811