Adaptive Penalized Regression for High-Efficiency Estimation in Correlated Predictor Settings: A Data-Driven Shrinkage Approach
Abstract
1. Introduction
2. Statistical Methodology
2.1. Existing Estimators
- Hoerl and Kennard Estimator
- 2.
- Hoerl, Kennard, and Baldwin Estimator
- 3.
- Kibria Estimators
- 4.
- Suhail, Chand, and Kibria Estimator
- 5.
- Lipovetsky and Conklin Two-Parameter Ridge Estimator
- 6.
- Toker and Kaciranlar Two-Parameter Ridge Estimator
- 7.
- Akhtar and Alharti Estimators
2.2. Proposed Estimators
2.3. Performance Evaluation Criteria
3. Simulation Study
4. Simulation Result Discussion
- Superior Performance of AATPR:
- 2.
- Robustness Against Multicollinearity:
- 3.
- Stability Across Error Variance Levels:
- 4.
- Dimensionality Effects:
- 5.
- Sample Size Considerations:
5. Applications
5.1. Analysis of Manufacturing Sector Data
5.2. Analysis of Pakistan GDP Growth Data
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipovetsky, S.; Conklin, W.M. Ridge regression in two-parameter solution. Appl. Stoch. Models Bus. Ind. 2005, 21, 525–540. [Google Scholar] [CrossRef]
- Khan, M.S.; Ali, A.; Suhail, M.; Alotaibi, E.S.; Alsubaie, N.E. On the estimation of ridge penalty in linear regression: Simulation and application. Kuwait J. Sci. 2024, 51, 100273. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 42, 80. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69. [Google Scholar] [CrossRef]
- Massy, W.F. Principal Components Regression in Exploratory Statistical Research. J. Am. Stat. Assoc. 1965, 60, 234–256. [Google Scholar] [CrossRef]
- Zou, H.; Trevor, H. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Garcia, C.G.; Pérez, J.G.; Liria, J.S. The raise method. An alternative procedure to estimate the parameters in presence of collinearity. Qual. Quant. 2011, 45, 403–423. [Google Scholar] [CrossRef]
- Garcia, C.B.; Salmeron, R.; Claudia, G.; Jose, G. Residualization: Justification, Properties and Application. J. Appl. Stat. 2020, 47, 1990–2010. [Google Scholar] [CrossRef]
- Belsley, D. A Guide to Using the Collinearity Diagnostics. Comput. Sci. Econ. Manag. 1991, 4, 33–50. [Google Scholar] [CrossRef]
- Dar, I.S.; Chand, S. Bootstrap-quantile ridge estimator for linear regression with applications. PLoS ONE 2024, 19, e0302221. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge Regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Hocking, R.R.; Speed, F.M.; Lynn, M.J. American Society for Quality A Class of Biased Estimators in Linear Regression. Technometrics 1976, 18, 425–437. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun. Stat. 1975, 4, 105–123. [Google Scholar] [CrossRef]
- Suhail, M.; Chand, S.; Kibria, B.M.G. Quantile based estimation of biasing parameters in ridge regression model. Commun. Stat. Simul. Comput. 2020, 49, 2732–2744. [Google Scholar] [CrossRef]
- Lipovetsky, S. Two-parameter ridge regression and its convergence to the eventual pairwise model. Math. Comput. Model. 2006, 44, 304–318. [Google Scholar] [CrossRef]
- Toker, S.; Kaçiranlar, S. On the performance of two parameter ridge estimator under the mean square error criterion. Appl. Math. Comput. 2013, 219, 4718–4728. [Google Scholar] [CrossRef]
- Kuran, Ö.; Özbay, N. Improving prediction by means of a two parameter approach in linear mixed models. J. Stat. Comput. Simul. 2021, 91, 3721–3743. [Google Scholar] [CrossRef]
- Akhtar, N.; Alharthi, M.F. Enhancing accuracy in modelling highly multicollinear data using alternative shrinkage parameters for ridge regression methods. Sci. Rep. 2025, 15, 10774. [Google Scholar] [CrossRef]
- Alharthi, M.F.; Akhtar, N. Newly Improved Two-Parameter Ridge Estimators: A Better Approach for Mitigating Multicollinearity in Regression Analysis. Axioms 2025, 14, 186. [Google Scholar] [CrossRef]
- Kibria, B.M.G. Performance of some New Ridge regression estimators. Commun. Stat. Part B Simul. Comput. 2003, 32, 419–435. [Google Scholar] [CrossRef]
- Khalaf, G.; Mansson, K.; Shukur, G. Modified ridge regression estimators. Commun. Stat. Theory Methods 2013, 42, 1476–1487. [Google Scholar] [CrossRef]
- Sengupta, N.; Sowell, F. On the Asymptotic Distribution of Ridge Regression Estimators Using Training and Test Samples. Econometrics 2020, 8, 39. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Khan, M.S.; Ali, A.; Suhail, M.; Awwad, F.A.; Ismail, E.A.A.; Ahmad, H. On the performance of two-parameter ridge estimators for handling multicollinearity problem in linear regression: Simulation and application. AIP Adv. 2023, 13, 115208. Available online: https://pubs.aip.org/adv/article/13/11/115208/2920711/On-the-performance-of-two-parameter-ridge (accessed on 2 September 2025). [CrossRef]
- Haq, M.S.; Kibira, B.M.G. A Shrinkage Estimator for the Restricted Linear Regression Model: Ridge Regression Approach. J. Appl. Stat. Sci. 1996, 3, 301–316. [Google Scholar]
- Mcdonald, G.C.; Galarneau, D.I.; Galarneau, D.I. A Monte Carlo Evaluation of Some Ridge-Type Estimators. J. Am. Stat. Assoc. 1975, 70, 407–416. [Google Scholar] [CrossRef]
- Suhail, M.; Chand, S.; Aslam, M. New quantile based ridge M-estimator for linear regression models with multicollinearity and outliers. Commun. Stat. Simul. Comput. 2021, 52, 1417–1434. [Google Scholar] [CrossRef]
- Halawa, A.M.; El Bassiouni, M.Y. Tests of regression coefficients under ridge regression models. J. Stat. Comput. Simul. 2000, 65, 341–356. [Google Scholar] [CrossRef]
- Newhouse, J.P.; Oman, S.D. An Evaluation of Ridge Estimators; Rand Corporation: Santa Monica, CA, USA, 1971; 716p. [Google Scholar]
- Yasin, S.; Kamal, S.; Suhail, M. Performance of Some New Ridge Parameters in Two-Parameter Ridge Regression Model. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 327–341. [Google Scholar] [CrossRef]
- Majid, A.; Ahmad, S.; Aslam, M.; Kashif, M. A robust Kibria–Lukman estimator for linear regression model to combat multicollinearity and outliers. Concurr. Comput. 2022, 35, e7533. [Google Scholar] [CrossRef]
- Eledum, H.; Zahri, M. RELAXATION METHOD FOR TWO STAGES RIDGE REGRESSION ESTIMATOR. Int. J. Pure Appl. Math. 2013, 85, 653–667. [Google Scholar] [CrossRef]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw Hill: Columbus, OH, USA, 2009. [Google Scholar]
n = 20, p = 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
σ = 1 | σ = 5 | σ = 10 | ||||||||||
Estimators | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 |
OLS | 1.8362 | 3.5113 | 15.8826 | 152.2112 | 45.0622 | 87.6211 | 417.4361 | 3833.6983 | 179.9323 | 355.0864 | 1645.8552 | 15,732.7017 |
HK | 0.8333 | 1.1711 | 4.8481 | 47.9894 | 14.3550 | 27.0577 | 129.1389 | 1122.3609 | 56.4732 | 114.0342 | 502.9027 | 4881.4484 |
HKB | 0.6055 | 0.9527 | 3.9860 | 34.7457 | 10.8778 | 20.9157 | 101.7892 | 911.0331 | 43.4185 | 88.4750 | 396.3767 | 3795.4800 |
KAM | 0.3290 | 0.5092 | 1.5810 | 8.1366 | 3.4673 | 5.1092 | 16.5697 | 72.6402 | 10.2609 | 15.9687 | 46.8799 | 203.0419 |
SCKQ0.95 | 1.2378 | 2.2402 | 9.4886 | 88.5608 | 26.4717 | 51.2289 | 247.3543 | 2233.1539 | 105.9365 | 210.3253 | 967.9444 | 9300.4372 |
LCTPR | 0.0995 | 0.1578 | 0.3129 | 0.1310 | 1.4465 | 1.1395 | 0.6955 | 0.4573 | 6.8328 | 6.0188 | 3.9294 | 4.3786 |
TKTPR | 1.1215 | 0.7556 | 0.4024 | 0.2646 | 7.2641 | 7.8466 | 7.4716 | 6.2473 | 26.9412 | 30.4845 | 31.2074 | 38.1610 |
CARE1 | 0.1322 | 0.0906 | 0.0654 | 0.0628 | 4.1509 | 2.7174 | 0.9605 | 0.8109 | 25.4370 | 21.6214 | 9.5261 | 6.5962 |
CARE2 | 0.1429 | 0.1367 | 0.1381 | 0.1316 | 0.9858 | 0.7929 | 0.6212 | 0.5622 | 6.3830 | 5.6146 | 3.8261 | 4.4869 |
CARE3 | 0.0867 | 0.0824 | 0.0817 | 0.0810 | 0.8174 | 0.6891 | 0.5634 | 0.5032 | 5.4058 | 5.0510 | 3.6864 | 4.4278 |
AATPR | 0.0174 | 0.0149 | 0.0137 | 0.0127 | 0.7082 | 0.6205 | 0.4977 | 0.4343 | 5.1251 | 4.9128 | 3.6279 | 4.3467 |
n = 50, p = 4 | ||||||||||||
OLS | 0.5258 | 1.0576 | 5.3571 | 54.5584 | 13.2727 | 26.3312 | 135.4197 | 1366.6038 | 53.6220 | 106.5930 | 533.8377 | 5300.7284 |
HK | 0.2632 | 0.4217 | 1.9482 | 17.8778 | 4.5097 | 8.7267 | 45.5868 | 444.5844 | 17.8144 | 35.8653 | 172.0658 | 1717.6850 |
HKB | 0.2491 | 0.3661 | 1.3790 | 13.2187 | 3.4504 | 6.5286 | 32.6977 | 325.2639 | 13.7083 | 25.5072 | 126.9709 | 1228.5303 |
KAM | 0.1554 | 0.2478 | 0.8421 | 4.4578 | 1.6966 | 2.7746 | 8.3490 | 38.5316 | 4.7656 | 7.4755 | 19.9668 | 85.8998 |
SCKQ0.95 | 0.4268 | 0.7900 | 3.4892 | 33.7170 | 8.3959 | 16.3983 | 83.2759 | 837.3630 | 33.6236 | 65.8549 | 326.6111 | 3221.9677 |
LCTPR | 0.0405 | 0.0717 | 0.2386 | 0.1515 | 0.6154 | 0.5127 | 0.2898 | 0.1448 | 2.2945 | 1.8433 | 1.4823 | 2.9325 |
TKTPR | 0.8953 | 0.4800 | 0.2729 | 0.0150 | 3.7143 | 3.3983 | 3.9441 | 2.4280 | 12.6473 | 14.4394 | 13.7694 | 10.6069 |
CARE1 | 0.1505 | 0.1050 | 0.0586 | 0.0557 | 3.6419 | 2.0650 | 0.3689 | 0.1798 | 22.5815 | 19.1777 | 7.1728 | 4.2852 |
CARE2 | 0.1286 | 0.1289 | 0.1267 | 0.1328 | 0.4092 | 0.2916 | 0.2758 | 0.2524 | 3.1855 | 2.1821 | 1.5991 | 3.0491 |
CARE3 | 0.0739 | 0.0731 | 0.0731 | 0.0730 | 0.2659 | 0.2221 | 0.2224 | 0.1973 | 1.9000 | 1.5492 | 1.4489 | 2.9763 |
AATPR | 0.0062 | 0.0055 | 0.0052 | 0.0052 | 0.1874 | 0.1555 | 0.1541 | 0.1278 | 1.5158 | 1.3634 | 1.3647 | 2.9175 |
n = 100, p = 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
σ = 1 | σ = 5 | σ = 10 | ||||||||||
Estimators | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 |
OLS | 0.2570 | 0.5065 | 2.4764 | 24.6227 | 6.4083 | 12.4000 | 60.6824 | 612.6839 | 25.1861 | 49.8313 | 254.2551 | 2426.8792 |
HK | 0.2059 | 0.3419 | 1.0234 | 7.5382 | 2.1968 | 4.0531 | 18.5939 | 188.4008 | 8.1679 | 14.9283 | 80.7834 | 772.3286 |
HKB | 0.1353 | 0.2162 | 0.6778 | 5.9931 | 1.6787 | 2.9598 | 13.8958 | 139.5057 | 6.0805 | 11.6390 | 58.6887 | 546.1121 |
KAM | 0.0827 | 0.1196 | 0.3737 | 2.0074 | 0.8739 | 1.3584 | 3.9091 | 19.2621 | 2.3715 | 3.7187 | 11.0485 | 43.1370 |
SCKQ0.95 | 0.2201 | 0.3991 | 1.6230 | 14.6176 | 4.0146 | 7.5134 | 35.3834 | 357.6920 | 15.2078 | 29.4572 | 150.0062 | 1414.2695 |
LCTPR | 0.0161 | 0.0259 | 0.1009 | 0.2247 | 0.3586 | 0.4036 | 0.2664 | 0.0978 | 1.0976 | 0.8775 | 0.5415 | 0.3817 |
TKTPR | 0.4442 | 0.2361 | 0.1544 | 0.0944 | 2.5330 | 2.3568 | 1.4519 | 1.8318 | 6.4530 | 6.3541 | 6.9808 | 9.4470 |
CARE1 | 0.1308 | 0.1125 | 0.0608 | 0.0527 | 2.3889 | 1.8403 | 0.3252 | 0.1176 | 11.9054 | 10.6805 | 3.9030 | 1.6847 |
CARE2 | 0.1293 | 0.1250 | 0.1233 | 0.1240 | 0.3033 | 0.2172 | 0.1912 | 0.1846 | 1.6227 | 0.8353 | 0.5337 | 0.4855 |
CARE3 | 0.0720 | 0.0708 | 0.0707 | 0.0705 | 0.1587 | 0.1447 | 0.1367 | 0.1323 | 0.7362 | 0.5431 | 0.4390 | 0.4312 |
AATPR | 0.0034 | 0.0030 | 0.0025 | 0.0026 | 0.0845 | 0.0733 | 0.0673 | 0.0646 | 0.5099 | 0.4331 | 0.3601 | 0.3627 |
n = 20, p = 10 | ||||||||||||
OLS | 6.6317 | 13.6982 | 70.4922 | 716.8289 | 169.3331 | 346.0870 | 1782.2582 | 17,600.3318 | 677.8317 | 1383.1872 | 6913.3797 | 71,815.1929 |
HK | 2.9524 | 5.7521 | 28.0653 | 286.5865 | 69.5586 | 140.8331 | 720.7539 | 7032.2026 | 281.7812 | 552.9646 | 2719.7440 | 28,930.2631 |
HKB | 1.2841 | 2.6443 | 13.2939 | 132.2263 | 31.2095 | 64.5457 | 331.3636 | 3094.3952 | 129.5274 | 248.3826 | 1233.6230 | 12,950.3538 |
KAM | 0.4444 | 0.7910 | 3.4732 | 26.1944 | 7.6442 | 14.2231 | 59.9381 | 464.2617 | 26.9998 | 46.8631 | 191.5989 | 1504.4142 |
SCKQ0.95 | 4.8117 | 9.6667 | 48.8921 | 494.5384 | 118.3918 | 241.1137 | 1238.0082 | 12,147.2933 | 478.4283 | 957.7400 | 4751.4170 | 49,598.4219 |
LCTPR | 0.0258 | 0.0401 | 0.1614 | 0.2428 | 0.6670 | 0.6399 | 0.4452 | 0.1843 | 5.4863 | 4.1882 | 2.7955 | 1.7175 |
TKTPR | 0.7078 | 0.7119 | 0.3592 | 0.9986 | 17.6250 | 17.6573 | 18.3583 | 7.0454 | 93.8814 | 102.1094 | 104.3437 | 104.6398 |
CARE1 | 0.1847 | 0.1459 | 0.1321 | 0.1331 | 2.8140 | 1.0801 | 0.4880 | 0.2621 | 31.0289 | 19.4319 | 7.6854 | 3.8560 |
CARE2 | 0.3099 | 0.3051 | 0.3186 | 0.3077 | 0.5926 | 0.5236 | 0.5095 | 0.4324 | 4.9636 | 3.8462 | 2.8812 | 1.9929 |
CARE3 | 0.1785 | 0.1767 | 0.1751 | 0.1752 | 0.4419 | 0.3802 | 0.3728 | 0.3040 | 4.3917 | 3.5482 | 2.7100 | 1.8518 |
AATPR | 0.0079 | 0.0062 | 0.0054 | 0.0055 | 0.2612 | 0.2063 | 0.2032 | 0.1317 | 4.1705 | 3.3554 | 2.5351 | 1.6818 |
n = 50, p = 10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
σ = 1 | σ = 5 | σ = 10 | ||||||||||
Estimators | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 | 0.90 | 0.95 | 0.99 | 0.999 |
OLS | 2.9814 | 5.9091 | 30.2173 | 293.9743 | 74.9081 | 149.7640 | 749.5377 | 7316.5106 | 299.1009 | 605.8387 | 3001.4525 | 29,655.1073 |
HK | 1.5839 | 2.7282 | 12.4960 | 118.4449 | 31.2931 | 62.7277 | 302.8598 | 2991.1756 | 125.9605 | 256.1529 | 1214.7661 | 12,230.3712 |
HKB | 0.6930 | 1.2022 | 5.5818 | 54.0048 | 13.8436 | 27.6069 | 133.7457 | 1321.6812 | 55.2758 | 110.6987 | 537.9695 | 5258.8791 |
KAM | 0.2326 | 0.4288 | 1.7510 | 12.8683 | 4.1124 | 7.4044 | 29.2760 | 205.6524 | 13.5885 | 25.4599 | 94.2310 | 668.3306 |
SCKQ0.95 | 2.3001 | 4.4079 | 21.7677 | 209.4354 | 54.3347 | 107.4687 | 532.1998 | 5198.5170 | 216.1079 | 434.7755 | 2135.2160 | 21,030.5045 |
LCTPR | 0.0104 | 0.0180 | 0.0650 | 0.1659 | 0.2569 | 0.2742 | 0.2039 | 0.0778 | 0.9744 | 1.0692 | 0.4458 | 0.2233 |
TKTPR | 0.2106 | 0.1638 | 0.2925 | 0.1781 | 2.8498 | 2.8324 | 2.7760 | 1.0026 | 30.1299 | 31.5015 | 26.6009 | 27.5152 |
CARE1 | 0.1816 | 0.1475 | 0.1267 | 0.1264 | 1.8683 | 0.6985 | 0.2031 | 0.1764 | 15.4161 | 7.3045 | 2.2079 | 0.6906 |
CARE2 | 0.3075 | 0.3089 | 0.3063 | 0.3055 | 0.3819 | 0.3656 | 0.3749 | 0.3525 | 1.0329 | 1.1241 | 0.6468 | 0.5157 |
CARE3 | 0.1720 | 0.1715 | 0.1717 | 0.1720 | 0.2359 | 0.2297 | 0.2233 | 0.2213 | 0.7951 | 0.9410 | 0.5097 | 0.3786 |
AATPR | 0.0026 | 0.0023 | 0.0020 | 0.0021 | 0.0636 | 0.0580 | 0.0522 | 0.0505 | 0.6045 | 0.7614 | 0.3405 | 0.2081 |
n = 100, p = 10 | ||||||||||||
OLS | 1.1983 | 2.4045 | 12.6309 | 124.5025 | 29.5003 | 60.0620 | 305.8644 | 3126.2703 | 118.6617 | 246.1632 | 1271.5450 | 12,568.4173 |
HK | 0.7792 | 0.9844 | 5.2113 | 48.9885 | 12.0080 | 24.6107 | 120.1917 | 1213.0038 | 47.7277 | 99.6658 | 516.0402 | 5001.0816 |
HKB | 0.3454 | 0.5436 | 2.3016 | 22.3026 | 5.3537 | 10.6730 | 54.3188 | 551.2782 | 21.5560 | 44.3498 | 219.9894 | 2096.1307 |
KAM | 0.1025 | 0.1854 | 0.7939 | 6.0506 | 1.7590 | 3.1817 | 12.8908 | 95.7961 | 5.7921 | 10.8001 | 44.0593 | 309.8799 |
SCKQ0.95 | 0.9588 | 1.8151 | 8.9589 | 86.5187 | 20.9018 | 42.0719 | 211.3100 | 2154.8682 | 83.7742 | 171.9511 | 879.9181 | 8666.4791 |
LCTPR | 0.0043 | 0.0071 | 0.0264 | 0.1534 | 0.1175 | 0.1545 | 0.1855 | 0.0693 | 0.4038 | 0.3576 | 0.2261 | 0.1205 |
TKTPR | 0.0898 | 0.3280 | 0.1531 | 0.0233 | 1.0682 | 1.1046 | 0.8237 | 0.3165 | 10.2925 | 9.8648 | 10.0298 | 10.0114 |
CARE1 | 0.2147 | 0.1599 | 0.1262 | 0.1234 | 2.5535 | 1.0911 | 0.2041 | 0.1526 | 14.4240 | 6.0731 | 0.7572 | 0.2278 |
CARE2 | 0.3010 | 0.3059 | 0.2990 | 0.2998 | 0.3479 | 0.3348 | 0.3305 | 0.3304 | 0.5328 | 0.4458 | 0.4052 | 0.4110 |
CARE3 | 0.1711 | 0.1707 | 0.1706 | 0.1706 | 0.2046 | 0.1969 | 0.1973 | 0.1952 | 0.3511 | 0.2932 | 0.2750 | 0.2693 |
AATPR | 0.0013 | 0.0012 | 0.0010 | 0.0010 | 0.0334 | 0.0279 | 0.0266 | 0.0259 | 0.1719 | 0.1240 | 0.1040 | 0.1006 |
Estimators | OLS | HK | HKB | KAM | SCKQ0.95 | LCTPR | TKTPR | CARE1 | CARE2 | CARE3 | AATPR |
---|---|---|---|---|---|---|---|---|---|---|---|
Amount of biasedness | - | 0.09 | 0.04 | 0.05 | 0.08 | 0.03 | 3.89 | 25.07 | 1258.76 | 18,464.79 | 44.46 |
MSE | 3.484 | 0.501 | 0.469 | 0.475 | 0.498 | 0.480 | 6.308 | 0.824 | 0.885 | 0.887 | 0.215 |
0.2079 | −0.5738 | −0.5741 | −0.5740 | −0.5738 | −0.5745 | −0.5741 | −0.5743 | −0.5743 | −0.5743 | −0.5743 | |
0.9205 | −0.5169 | −0.5915 | −0.5727 | −0.5239 | −0.6142 | 0.0527 | −0.0100 | −0.0024 | −0.0022 | −0.0022 | |
−0.134 | −0.2314 | −0.2911 | −0.2750 | −0.2366 | −0.3116 | 0.0139 | −0.0028 | −0.0007 | −0.0006 | −0.0006 |
Estimators | OLS | HK | HKB | KAM | SCKQ0.95 | LCTPR | TKTPR | CARE1 | CARE2 | CARE3 | AATPR |
---|---|---|---|---|---|---|---|---|---|---|---|
Amount of biasedness | - | 0.08 | 0.06 | 437.08 | 2265.26 | 0.01 | 1.61 | 2282.73 | 10,421,695.90 | 11,898.13 | 5.89 |
MSE | 1,343,764 | 17,916.52 | 15,019.98 | 14,639.78 | 14,639.79 | 17,962.52 | 14,645.46 | 14,639.76 | 14,639.76 | 14,639.76 | 14,139.21 |
−48.1081 | −0.0185 | −0.0185 | −0.0028 | −0.0006 | −0.0186 | −0.0136 | −0.0994 | −0.1015 | −0.1015 | −0.1291 | |
100.2213 | −0.4462 | −0.4462 | −0.0145 | −0.0029 | −0.4492 | −0.3602 | −0.4605 | −0.4573 | −0.4573 | −0.6795 | |
−3.1256 | 0.5814 | 0.5814 | 0.0126 | 0.0025 | 0.5852 | 0.5014 | 0.3955 | 0.3918 | 0.3918 | 0.4053 | |
−2.5076 | 0.4883 | 0.4880 | 0.0012 | 0.0002 | 0.4914 | −0.6805 | 0.0367 | 0.0362 | 0.0362 | 0.3600 | |
−47.5806 | 3.4464 | 3.3672 | 0.0002 | 0.0000 | 3.4688 | −0.0373 | 0.0058 | 0.0058 | 0.0058 | 0.0061 | |
−0.9127 | −1.7387 | −0.7667 | 0.0000 | 0.0000 | −1.7500 | 0.0003 | −0.0001 | −0.0001 | −0.0001 | −0.0333 | |
0.4716 | −14.1422 | −2.9307 | 0.0000 | 0.0000 | −14.2342 | 0.0009 | −0.0001 | −0.0001 | −0.0001 | −0.0181 | |
−0.2461 | 16.6068 | 2.6074 | 0.0000 | 0.0000 | 16.7149 | −0.0008 | 0.0001 | 0.0001 | 0.0001 | 0.1644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Alharthi, A.S. Adaptive Penalized Regression for High-Efficiency Estimation in Correlated Predictor Settings: A Data-Driven Shrinkage Approach. Mathematics 2025, 13, 2884. https://doi.org/10.3390/math13172884
Khan MS, Alharthi AS. Adaptive Penalized Regression for High-Efficiency Estimation in Correlated Predictor Settings: A Data-Driven Shrinkage Approach. Mathematics. 2025; 13(17):2884. https://doi.org/10.3390/math13172884
Chicago/Turabian StyleKhan, Muhammad Shakir, and Amirah Saeed Alharthi. 2025. "Adaptive Penalized Regression for High-Efficiency Estimation in Correlated Predictor Settings: A Data-Driven Shrinkage Approach" Mathematics 13, no. 17: 2884. https://doi.org/10.3390/math13172884
APA StyleKhan, M. S., & Alharthi, A. S. (2025). Adaptive Penalized Regression for High-Efficiency Estimation in Correlated Predictor Settings: A Data-Driven Shrinkage Approach. Mathematics, 13(17), 2884. https://doi.org/10.3390/math13172884