Application of Natural Generalized-Laplace Transform and Its Properties
Abstract
1. Introduction
- (1) (GLT) instead of ”Generalized-Laplace Transform”.
- (2) (NT) instead of ” Natural transform”.
- (3) (NGLT) instead of ” Natural Generalized-Laplace Transform”.
- (4) (INGLT) instead of ” Inverse Natural Generalized-Laplace Transform”.
- (5) (NGLTDM) instead of ” Natural Generalized-Laplace Transform Decomposition Method”.
2. Properties of Natural Generalized-Laplace Transform
- 1.
- Setting and , we gained double Sumudu transform
- 2.
- Setting and we obtained Double Laplace Transform as
- 3.
- Setting and we obtained Laplace–Yang Transform
- Existence Condition for the (NGLT):
- The Natural Transform of the convolution product:
- The fundamental properties of the (NGLT) of partial derivatives:
3. Application of the (NGLT) to the Partial Differential Equation
- Partial integro-differential equation:
4. The Natural Generalized-Laplace Transform Decomposition Method (NGLTDM) Applied to the Singular One-Dimensional Boussinesq Equation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Khan, F. Laplace Adomian decomposition method for integro differential equations on time scale. Ain Shams Eng. J. 2025, 16, 103271. [Google Scholar] [CrossRef]
- Althrwi, F.; Farhat, A.S.H.; AlQarni, A.A.; Bakodah, H.O.; Alshaery, A.A. ShockWaves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes. Mathematics 2025, 13, 2686. [Google Scholar] [CrossRef]
- Albalawi, K.S.; Alazman, I.; Prasad, J.G.; Goswami, P. Analytical Solution of the Local Fractional KdV Equation. Mathematics 2023, 11, 882. [Google Scholar] [CrossRef]
- Eltayeb, H.; Kılıcman, A. A note on double Laplace transform and telegraphic equations. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
- Eltayeb, H.; Kılıcman, A. A note on solutions of wave, Laplace’s and heat equations with convolution terms by using a double Laplace transform. Appl. Math. Lett. 2008, 21, 1324–1329. [Google Scholar] [CrossRef]
- Zhong, R.L.Y.; Tian, B.; Liu, Y. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 2009, 22, 1821–1827. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A. N-transform properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
- Belgacem, F.B.M.; Silambarasan, R. Theory of the Natural transform. Math. Engg Sci. Aerosp. (MESA) J. 2012, 3, 99–124. [Google Scholar]
- Al-Omari, S.K.Q. On the application of Natural transforms. Int. J. Pure Appl. Math. 2013, 85, 729–744. [Google Scholar]
- Mahmoud, S. Rawashdeh and Shehu Maitama, Solving coupled system of nonlinear pde’s using the Natural decomposition method. Int. J. Pure Appl. Math. 2014, 92, 757–776. [Google Scholar]
- Maitama, S.; Rawashdeh, M.S.; Sulaiman, S. An analytical method for solving linear and nonlinear Schrodinger equations. Palest. J. Math. 2017, 6, 59–67. [Google Scholar]
- Kilicmana, A.; Omran, M. On double Natural transform and its applications. J. Nonlinear Sci. Appl. 2017, 10, 1744–1754. [Google Scholar] [CrossRef]
- Rawashdeh, M.; Maitama, S. Finding exact solutions of nonlinear PDEs using the natural decomposition method. Math. Methods Appl. Sci. 2017, 40, 223–236. [Google Scholar] [CrossRef]
- Cherif, M.H.; Ziane, D.; Belghaba, K. Fractional natural decomposition method for solving fractional system of nonlinear equations of unsteady flow of a polytropic gas. Nonlinear Stud. 2018, 25, 753–764. [Google Scholar]
- Wazwaz, A.-M. New travelling wave solutions to the Boussinesq and the KleinGordon equations. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 889–901. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 2001, 12, 1549–1556. [Google Scholar] [CrossRef]
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1762729. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I.; Gad-Allah, M. Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method. Adv. Differ. Equ. 2019, 2019, 293. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, H. Application of Natural Generalized-Laplace Transform and Its Properties. Mathematics 2025, 13, 3194. https://doi.org/10.3390/math13193194
Eltayeb H. Application of Natural Generalized-Laplace Transform and Its Properties. Mathematics. 2025; 13(19):3194. https://doi.org/10.3390/math13193194
Chicago/Turabian StyleEltayeb, Hassan. 2025. "Application of Natural Generalized-Laplace Transform and Its Properties" Mathematics 13, no. 19: 3194. https://doi.org/10.3390/math13193194
APA StyleEltayeb, H. (2025). Application of Natural Generalized-Laplace Transform and Its Properties. Mathematics, 13(19), 3194. https://doi.org/10.3390/math13193194

