On Smooth Solution to Three-Dimensional Incompressible Navier–Stokes Equations Based on Numerical Solutions by Finite Element Approximation
Abstract
1. Introduction
2. Notations and Main Results
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leray, J. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 1934, 63, 193–248. [Google Scholar] [CrossRef]
- Hopf, E. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 1951, 4, 213–231. [Google Scholar] [CrossRef]
- Fujita, H.; Kato, T. On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
- Kato, T. Strong Lp-solutions of the Navier–Stokes equations in with applications to weak solutions. Math. Z. 1984, 187, 471–480. [Google Scholar] [CrossRef]
- Cannone, M. Ondelettes, Paraproduits et Navier–Stokes; Arts et Sciences, Diderot Editeur: Paris, France, 1995. [Google Scholar]
- Planchon, F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in . Ann. Inst. Henri Poincare 1996, 13, 319–336. [Google Scholar] [CrossRef]
- Koch, H.; Tataru, D. Well-posedness for the Navier–Stokes equations. Adv. Math. 2001, 157, 22–35. [Google Scholar] [CrossRef]
- Lei, Z.; Lin, F. Global mild solutions of Navier–Stokes equations. Comm. Pure Appl. Math. 2011, 64, 1297–1304. [Google Scholar] [CrossRef]
- Guo, Z.; Gala, S. Remarks on logarithmical regularity criteria for the Navier–Stokes equations. J. Math. Phys. 2011, 52, 063503. [Google Scholar] [CrossRef]
- Kukavica, I.; Rusin, W.; Ziane, M. An anisotropic partial regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 2017, 19, 123–133. [Google Scholar] [CrossRef]
- Zhou, Y. On regularity criteria in terms of pressure for the Navier–Stokes equations in . Proc. Amer. Math. Soc. 2006, 134, 149–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Pokorny, M. On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 2010, 23, 1097–1107. [Google Scholar] [CrossRef]
- Donea, J.; Giuliani, S.; Laval, H.; Quartapelle, L. Finite element solution of the unsteady Navier–Stokes equations by a fractional step method. Comput. Methods Appl. Mech. Eng. 1982, 30, 53–73. [Google Scholar] [CrossRef]
- Fortin, M. Finite element solution of the Navier–Stokes equations. Acta Numer. 1993, 2, 239–284. [Google Scholar] [CrossRef]
- He, Y.; Sun, W. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 2007, 76, 115–136. [Google Scholar] [CrossRef]
- Heywood, J.G.; Rannacher, R. Finite-element approximation of the nonstationary Navier–Stokes problem I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 1982, 19, 275–311. [Google Scholar] [CrossRef]
- Si, Z.; Wang, J.; Sun, W. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 2016, 134, 139–161. [Google Scholar] [CrossRef]
- Chien, J.C. A general finite-difference formulation with application to Navier–Stokes equations. J. Comput. Phys. 1976, 20, 268–278. [Google Scholar] [CrossRef]
- Nikitin, N. Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys. 2006, 217, 759–781. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Kim, J. A practical finite difference scheme for the Navier–Stokes equation on curved surfaces in . J. Comput. Phys. 2020, 411, 109403. [Google Scholar] [CrossRef]
- Bermejo, R.; del Sastre, P.G.; Saavedra, L. A second order in time modified Lagrange–Galerkin finite element method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 2012, 50, 3084–3109. [Google Scholar] [CrossRef]
- He, Y. Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations. Numer. Math. 2013, 123, 67–96. [Google Scholar] [CrossRef]
- Süli, E. Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 1988, 53, 459–483. [Google Scholar]
- Heywood, J.G. An error estimate uniform in time for spectral Galerkin approximations of the Navier–Stokes problem. Pac. J. Math. 1982, 98, 333–345. [Google Scholar]
- Malik, M.R.; Zang, T.A.; Hussaini, M.Y. A spectral collocation method for the Navier–Stokes equations. J. Comput. Phys. 1985, 61, 64–88. [Google Scholar] [CrossRef]
- Shen, J.; Tang, T.; Wang, L.-L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science: Berlin, Germany, 2011; Volume 41. [Google Scholar]
- Li, B. A bounded numerical solution with a small mesh size implies existence of a smooth solution to the Navier–Stokes equations. Numer. Math. 2021, 147, 283–304. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, M. Existence of smooth solutions to the 3D Navier–Stokes equations based on numerical solutons by the Crank-Nicolson finite element method. Calcolo 2024, 61, 36. [Google Scholar]
- Chen, R.; Yang, X.; Zhang, H. Second order; linear, and unconditionally energy stable schemes for a hydrodynamic model of smectic-A liquid crystals. SIAM J. Sci. 2017, 39, A2808–A2833. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, C.; Wise, S.M. An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation. Commun. Comput. Phys. 2019, 26, 1335–1364. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J. Consistence-enhanced SAV BDF2 time-marching method with relaxation for the incompressible Cahn-Hilliard-Navier–Stokes binary fluid model. Commun. Nonlinear Sci. Anumer. Simul. 2023, 118, 107055. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, W.; Wang, C.; Wise, S.M. A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation. Commun. Comput. Phys. 2018, 23, 572–602. [Google Scholar]
- Yang, X.; Zhao, J.; Wang, Q.; Shen, J. Numerical approximations for a three-components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 2017, 27, 1993–2030. [Google Scholar] [CrossRef]
- Yao, C.; Wang, C.; Kou, Y.; Lin, Y. A third order linearized BDF scheme for Maxwell’s equations with nonlinear conductivity using finite element method. Int. J. Numer. Anal. Model. 2017, 14, 511–531. [Google Scholar]
- Dauge, V. Stationary Stokes and Navier–Stokes system on two-or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal. 1989, 20, 74–97. [Google Scholar] [CrossRef]
- Chu, T.; Wang, J.; Wang, N.; Zhang, Z. Optimal-order convergence of a two-step BDF method for the Navier–Stokes equations with H1 intial data. J. Sci. Comput. 2023, 96, 62. [Google Scholar] [CrossRef]
- Isik, O.R.; Yuksel, G.; Demir, B. Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier–Stokes equations with nonlinear time relaxation. Numer. Methods Partial Differential Equ. 2018, 34, 2060–2078. [Google Scholar] [CrossRef]
| Auxiliary Functions | Properties |
|---|---|
| : decreasing function | depend on and does not depend on and T |
| : increasing function | depend on and does not depend on and T, satisfies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Cao, J.; Zhang, Z. On Smooth Solution to Three-Dimensional Incompressible Navier–Stokes Equations Based on Numerical Solutions by Finite Element Approximation. Mathematics 2025, 13, 3236. https://doi.org/10.3390/math13193236
Liu F, Cao J, Zhang Z. On Smooth Solution to Three-Dimensional Incompressible Navier–Stokes Equations Based on Numerical Solutions by Finite Element Approximation. Mathematics. 2025; 13(19):3236. https://doi.org/10.3390/math13193236
Chicago/Turabian StyleLiu, Fengnan, Junpeng Cao, and Ziqiu Zhang. 2025. "On Smooth Solution to Three-Dimensional Incompressible Navier–Stokes Equations Based on Numerical Solutions by Finite Element Approximation" Mathematics 13, no. 19: 3236. https://doi.org/10.3390/math13193236
APA StyleLiu, F., Cao, J., & Zhang, Z. (2025). On Smooth Solution to Three-Dimensional Incompressible Navier–Stokes Equations Based on Numerical Solutions by Finite Element Approximation. Mathematics, 13(19), 3236. https://doi.org/10.3390/math13193236
