A Minimal CA-Based Model Capturing Evolutionarily Relevant Features of Biological Development
Abstract
1. Introduction
2. Methods: The Model
- Rule 0 (stasis): The cell remains unchanged and alive in the next time step: .
- Rule 1 (apoptosis): The cell dies: . Besides the genetic regulation of cell death (see below), this rule is applied by default whenever a cell has zero living neighbors to ensure the physical continuity and integrity of the system.
- Rule 2 (change of internal state): The cell updates its state: ; if , then . Note that while other increments in Rule 2 (e.g., +2, +3) are certainly possible, they would unnecessarily complicate the minimal nature of the model and diverge from biological systems, where non-gradual changes in cell states are typically achieved through gene regulatory network dynamics.
- Rule 3 (growth): The cell initiates the creation of a clone in the direction specified by its internal state , provided that the target cell is vacant. If the target location is already occupied by another living cell, no action is taken. Without loss of generality, directions are defined relative to the Moore neighborhood and indexed clockwise, starting from the cell directly above. Each direction is labeled using a two-letter code that combines vertical (U: Up; C: Central; D: Down) and horizontal (L: Left; C: Central; R: Right) references. Accordingly, corresponds to UC, to UR, to CR, to DR, to DC, to DL, to CL, and to UL.
3. Results
3.1. Complexity and Stability Analysis
3.2. Genotype-to-Phenotype Mappings
3.3. Evolvability Assays
3.4. Simulating Adaptive Maternal Effects with Our CA-Based Model
3.5. Simulating Tumor Growth with Our CA-Based Model
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CA | Cellular Automaton |
| D | Clonal Diversity (for Tumor growth simulations) |
| Epi | Epigenetic Matrix |
| G | Genetic Vector |
| GHD | Genetic Hamming Distance |
| GPM | Genotype-to-Phenotype Map |
| GRN | Gene Regulatory Network |
| H | Shannon Entropy |
| HD | Hausdorff Dimension (i.e., “Fractality”) |
| MMS | Morphogenetic Mutations Scenario |
| NMMS | Non-Morphogenetic Mutations Scenario |
| PED | Phenotypic Euclidean Distance |
| PHD | Phenotypic Hamming Distance |
| T | Target Phenotype (for Evolutionary Simulations) |
| W | Fitness (for Evolutionary Simulations) |
References
- Kauffman, S.A. The origins of order: Self-organization and selection in evolution. In Spin Glasses and Biology; World Scientific: Singapore, 1992; pp. 61–100. [Google Scholar]
- Prigogine, I. Order Out of Chaos: Man’s New Dialogue with Nature; Verso: London, UK, 2017. [Google Scholar]
- Beloussov, L. The Dynamic Architecture of a Developing Organism; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Thompson, D.W. On Growth and Form, 1st ed.; Cambridge University Press: Cambridge, UK, 1917. [Google Scholar]
- Goodwin, B. How the Leopard Changed Its Spots: The Evolution of Complexity; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Salazar-Ciudad, I.; Jernvall, J.; Newman, S.A. Mechanisms of pattern formation in development and evolution. Development 2003, 130, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Forgacs, G.; Newman, S.A. Biological Physics of the Developing Embryo; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Newman, S.A.; Bhat, R. Dynamical patterning modules: A “pattern language” for development and evolution of multicellular form. Int. J. Dev. Biol. 2009, 53, 693–705. [Google Scholar] [CrossRef]
- Alberch, P. From genes to phenotype: Dynamical systems and evolvability. Genetica 1991, 84, 5–11. [Google Scholar] [CrossRef]
- Brun-Usan, M.; Zimm, R.; Uller, T. Beyond genotype-phenotype maps: Toward a phenotype-centered perspective on evolution. BioEssays 2022, 44, 2100225. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Ciudad, I.; Marín-Riera, M. Adaptive dynamics under development-based genotype–phenotype maps. Nature 2013, 497, 361–364. [Google Scholar] [CrossRef]
- Harjunmaa, E.; Kallonen, A.; Voutilainen, M.; Hämäläinen, K.; Mikkola, M.L.; Jernvall, J. On the difficulty of increasing dental complexity. Nature 2012, 483, 324–327. [Google Scholar] [CrossRef]
- Uller, T.; Moczek, A.P.; Watson, R.A.; Brakefield, P.M.; Laland, K.N. Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018, 209, 949–966. [Google Scholar] [CrossRef]
- Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 1997, 12, 307–312. [Google Scholar] [CrossRef]
- Gould, S.J. The Structure of Evolutionary Theory; Harvard University Press: Cambridge, MA, USA; London, UK, 2002. [Google Scholar]
- Galis, F.; Metz, J.A.; van Alphen, J.J. Development and Evolutionary Constraints in Animals. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 499–522. [Google Scholar] [CrossRef]
- Raup, D.M. The geometry of coiling in gastropods. Proc. Natl. Acad. Sci. USA 1961, 47, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Maynard Smith, J.; Burian, R.M.; Kauffman, S.; Alberch, P.; Campbell, J.; Goodwin, B.; Lande, R.; Raup, D.; Wolpert, L. Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution. Q. Rev. Biol. 1985, 60, 265–287. [Google Scholar] [CrossRef]
- Roff, D. The evolution of the G matrix: Selection or drift? Heredity 2000, 84, 135–142. [Google Scholar] [CrossRef]
- Rice, S.H. Theoretical Approaches to the Evolution of Development and Genetic Architecture. Ann. N. Y. Acad. Sci. 2008, 1133, 67–86. [Google Scholar] [CrossRef]
- McGhee, G.R. The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Honda, H.; Tanemura, M.; Nagai, T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 2004, 226, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Sandersius, S.A.; Newman, T.J. Modeling cell rheology with the Subcellular Element Model. Phys. Biol. 2008, 5, 015002. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Inoue, Y.; Adachi, T. Three-dimensional vertex model for simulating multicellular morphogenesis. Biophys. Physicobiol. 2015, 12, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Marin-Riera, M.; Brun-Usan, M.; Zimm, R.; Välikangas, T.; Salazar-Ciudad, I. Computational modeling of development by epithelia, mesenchyme and their interactions: A unified model. Bioinformatics 2016, 32, 219–225. [Google Scholar] [CrossRef]
- Nissen, S.B.; Rønhild, S.; Trusina, A.; Sneppen, K. Theoretical tool bridging cell polarities with development of robust morphologies. eLife 2018, 7, e38407. [Google Scholar] [CrossRef]
- Hogeweg, P. Evolving Mechanisms of Morphogenesis: On the Interplay between Differential Adhesion and Cell Differentiation. J. Theor. Biol. 2000, 203, 317–333. [Google Scholar] [CrossRef]
- Salazar-Ciudad, I.; Solé, R.V.; Newman, S.A. Phenotypic and dynamical transitions in model genetic networks II. Application to the evolution of segmentation mechanisms. Evol. Dev. 2001, 3, 95–103. [Google Scholar] [CrossRef]
- Osborne, J.M.; Fletcher, A.G.; Pitt-Francis, J.M.; Maini, P.K.; Gavaghan, D.J. Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Comput. Biol. 2017, 13, e1005387. [Google Scholar] [CrossRef]
- Levins, R. The Strategy of Model Building in Population Biology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
- Arnold, S.J.; Bürger, R.; Hohenlohe, P.A.; Ajie, B.C.; Jones, A.G. Understanding the evolution and stability of the G-matrix. Evolution 2008, 62, 2451–2461. [Google Scholar] [CrossRef]
- Hansen, T.F.; Wagner, G.P. Modeling Genetic Architecture: A Multilinear Theory of Gene Interaction. Theor. Popul. Biol. 2001, 59, 61–86. [Google Scholar] [CrossRef] [PubMed]
- Draghi, J.; Wagner, G.P. Evolution of Evolvability in a developmental model. Evolution 2008, 62, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Pavlicev, M.; Cheverud, J.M.; Wagner, G.P. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc. R. Soc. B Biol. Sci. 2011, 278, 1903–1912. [Google Scholar] [CrossRef]
- Hallgrimsson, B.; Jamniczky, H.A.; Young, N.M.; Rolian, C.; Schmidt-Ott, U.; Marcucio, R.S. The generation of variation and the developmental basis for evolutionary novelty. J. Exp. Zool. Part B Mol. Dev. Evol. 2012, 318, 501–517. [Google Scholar] [CrossRef]
- Von Neumann, J. Theory of self-reproducing automata. IEEE Trans. Neural Netw. 1966, 5, 3–14. [Google Scholar]
- Toffoli, T.; Margolus, N. Cellular Automata Machines: A New Environment for Modeling; MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Ilachinski, A. Cellular Automata: A Discrete Universe; World Scientific Publishing Company: Singapore, 2001. [Google Scholar]
- Izhikevich, E.M.; Conway, J.H.; Seth, A. Game of life. Scholarpedia 2015, 10, 1816. [Google Scholar] [CrossRef]
- Gardner, M. Mathematical Games. Sci. Am. 1970, 223, 120–123. [Google Scholar] [CrossRef]
- Weisstein, E.W.; Game of Life. MathWorld—A Wolfram Web Resource. 2002. Available online: https://mathworld.wolfram.com/GameofLife.html (accessed on 1 October 2025).
- Saadat, M. Cellular Automata in the Triangular Grid. Master’s Thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ), Famagusta, Cyprus, 2016. [Google Scholar]
- Woods, D.; Neary, T. The complexity of small universal Turing machines: A survey. Theor. Comput. Sci. 2009, 410, 443–450, Computational Paradigms from Nature. [Google Scholar] [CrossRef]
- Chan, B.W.C. Lenia and Expanded Universe. In Proceedings of the ALIFE 2020: The 2020 Conference on Artificial Life, Online, 13–18 July 2020; Artificial Life Conference Proceedings. MIT Press: Cambridge, MA, USA, 2020; pp. 221–229. [Google Scholar] [CrossRef]
- Caballero, L.; Germinal, C.; Sergio, H. Game of Life: Simple interactions ecology. In Frontiers in Ecology, Evolution and Complexity; TS0012EN; Benítez, M., Miramontes, O., Valiente-Banuet, A., Eds.; CopIt ArXives: Mexico City, Mexico, 2014. [Google Scholar]
- Caballero, L.; Hodge, B.; Hernandez, S. Conway’s “Game of Life” and the Epigenetic Principle. Front. Cell. Infect. Microbiol. 2016, 6, 57. [Google Scholar] [CrossRef]
- Waddington, C.H. New Patterns in Genetics and Development; Columbia University Press: New York, NY, USA, 1962. [Google Scholar]
- Jablonka, E.; Lamb, M.J. The inheritance of acquired epigenetic variations. Int. J. Epidemiol. 2015, 44, 1094–1103. [Google Scholar] [CrossRef]
- Hagolani, P.F.; Zimm, R.; Marin-Riera, M.; Salazar-Ciudad, I. Cell signaling stabilizes morphogenesis against noise. Development 2019, 146, dev179309. [Google Scholar] [CrossRef]
- Petak, C.; Frati, L.; Vroomans, R.M.; Pespeni, M.H.; Cheney, N. The variability of evolvability: Properties of dynamic fitness landscapes determine how phenotypic variability evolves. bioRxiv 2025. [Google Scholar] [CrossRef]
- Graner, F.; Glazier, J.A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 1992, 69, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- Swat, M.H.; Thomas, G.L.; Belmonte, J.M.; Shirinifard, A.; Hmeljak, D.; Glazier, J.A. Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol. 2012, 110, 325–366. [Google Scholar] [CrossRef]
- Canty, L.; Zarour, E.; Kashkooli, L.; François, P.; Fagotto, F. Sorting at embryonic boundaries requires high heterotypic interfacial tension. Nat. Commun. 2017, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Franke, F.; Aland, S.; Böhme, H.J.; Voss-Böhme, A.; Lange, S. Is cell segregation like oil and water: Asymptotic versus transitory regime. PLoS Comput. Biol. 2022, 18, e1010460. [Google Scholar] [CrossRef]
- Lange, S.; Schmied, J.; Willam, P.; Voss-Böhme, A. Minimal cellular automaton model with heterogeneous cell sizes predicts epithelial colony growth. J. Theor. Biol. 2024, 592, 111882. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Guan, G.; Tang, C.; Zhang, L. MorphoSim: An efficient and scalable phase-field framework for accurately simulating multicellular morphologies. NPJ Syst. Biol. Appl. 2023, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Starruß, J.; de Back, W.; Brusch, L.; Deutsch, A. Morpheus: A user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 2014, 30, 1331–1332. [Google Scholar] [CrossRef]
- Mirams, G.R.; Arthurs, C.J.; Bernabeu, M.O.; Bordas, R.; Cooper, J.; Corrias, A.; Davit, Y.; Dunn, S.J.; Fletcher, A.G.; Harvey, D.G.; et al. Chaste: An open source C++ library for computational physiology and biology. PLoS Comput. Biol. 2013, 9, e1002970. [Google Scholar] [CrossRef]
- Izaguirre, J.A.; Chaturvedi, R.; Huang, C.; Cickovski, T.; Coffland, J.; Thomas, G.; Forgacs, G.; Alber, M.; Hentschel, G.; Newman, S.A.; et al. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 2004, 20, 1129–1137. [Google Scholar] [CrossRef]
- Libby, A.R.; Briers, D.; Haghighi, I.; Joy, D.A.; Conklin, B.R.; Belta, C.; McDevitt, T.C. Automated Design of Pluripotent Stem Cell Self-Organization. Cell Syst. 2019, 9, 483–495.e10. [Google Scholar] [CrossRef]
- Nelemans, B.K.; Schmitz, M.; Tahir, H.; Merks, R.M.; Smit, T.H. Somite Division and New Boundary Formation by Mechanical Strain. iScience 2020, 23, 100976. [Google Scholar] [CrossRef] [PubMed]
- Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Voss-Böhme, A. Multi-scale modeling in morphogenesis: A critical analysis of the cellular potts model. PLoS ONE 2012, 7, e42852. [Google Scholar] [CrossRef]
- Killeen, A.; Partridge, B.; Bertrand, T.; Lee, C.F. Modeling growing confluent tissues using a lattice Boltzmann method: Interface stability and fluctuations. Phys. Rev. Res. 2023, 5, 043096. [Google Scholar] [CrossRef]
- Alert, R.; Trepat, X. Physical models of collective cell migration. Annu. Rev. Condens. Matter Phys. 2020, 11, 77–101. [Google Scholar] [CrossRef]
- Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601–644. [Google Scholar] [CrossRef]
- Crombach, A.; Hogeweg, P. Evolution of evolvability in gene regulatory networks. PLoS Comput. Biol. 2008, 4, e1000112. [Google Scholar] [CrossRef]
- Hernández-Hernández, V.; Niklas, K.J.; Newman, S.A.; Benítez, M. Dynamical patterning modules in plant development and evolution. Int. J. Dev. Biol. 2012, 56, 661–674. [Google Scholar] [CrossRef]
- Noble, R.; Burri, D.; Kather, J.N.; Beerenwinkel, N. Spatial structure governs the mode of tumour evolution. Nat. Ecol. Evol. 2022, 6, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Chopard, B.; Ouared, R.; Deutsch, A.; Hatzikirou, H.; Wolf-Gladrow, D. Lattice-gas cellular automaton models for biology: From fluids to cells. Acta Biotheor. 2010, 58, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Ofria, C.; Wilke, C.O. Avida: A Software Platform for Research in Computational Evolutionary Biology. Artif. Life 2004, 10, 191–229. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Genetical Theory of Natural Selection; Clarendon Press: Oxford, UK, 1930. [Google Scholar]
- Kimura, M. On the Probability of Fixation of Mutant Genes in a Population. Genetics 1962, 47, 713–719. [Google Scholar] [CrossRef]
- Gilbert, S.F.; Raunio, A.M. Embryology: Constructing the Organism; Sinauer Associates: Sunderland, MA, USA, 1997. [Google Scholar]
- Fontana, W.; Schuster, P. Shaping Space: The Possible and the Attainable in RNA Genotype–phenotype Mapping. J. Theor. Biol. 1998, 194, 491–515. [Google Scholar] [CrossRef]
- Levin, M.; Anavy, L.; Cole, A.G.; Winter, E.; Mostov, N.; Khair, S.; Senderovich, D.; Kovalev, E.; Silver, D.H.; Feder, M.; et al. The mid-developmental transition and the evolution of animal body plans. Nature 2016, 531, 637–641. [Google Scholar] [CrossRef]
- Jiménez, A.; Cotterell, J.; Munteanu, A.; Sharpe, J. Dynamics of gene circuits shapes evolvability. Proc. Natl. Acad. Sci. USA 2015, 112, 2103–2108. [Google Scholar] [CrossRef]
- Chaitin, G.J. Information-Theoretic Limitations of Formal Systems. J. ACM 1974, 21, 403–424. [Google Scholar] [CrossRef]
- Hagolani, P.F.; Zimm, R.; Vroomans, R.; Salazar-Ciudad, I. On the evolution and development of morphological complexity: A view from gene regulatory networks. PLoS Comput. Biol. 2021, 17, e1008570. [Google Scholar] [CrossRef]
- DiFrisco, J.; Jaeger, J. Beyond networks: Mechanism and process in evo-devo. Biol. Philos. 2019, 34, 54. [Google Scholar] [CrossRef]
- Katatbeh, Q.D.; Martínez-Aroza, J.; Gómez-Lopera, J.F.; Blanco-Navarro, D. An Optimal Segmentation Method Using Jensen–Shannon Divergence via a Multi-Size Sliding Window Technique. Entropy 2015, 17, 7996–8006. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1982. [Google Scholar]
- Furusawa, C.; Kaneko, K. Formation of dominant mode by evolution in biological systems. Phys. Rev. E 2018, 97, 042410. [Google Scholar] [CrossRef]
- Wilke, C.O. Adaptive Evolution on Neutral Networks. Bull. Math. Biol. 2001, 63, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Brun-Usan, M.; Thies, C.; Watson, R.A. How to fit in: The learning principles of cell differentiation. PLoS Comput. Biol. 2020, 16, e1006811. [Google Scholar] [CrossRef] [PubMed]
- Zimm, R.; Berio, F.; Debiais-Thibaud, M.; Goudemand, N. A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proc. Natl. Acad. Sci. USA 2023, 120, e2216959120. [Google Scholar] [CrossRef] [PubMed]
- Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 2008, 23, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Driever, W.; Nüsslein-Volhard, C. A gradient of bicoid protein in Drosophila embryos. Cell 1988, 54, 83–93. [Google Scholar] [CrossRef]
- Wells, H.G.; Huxley, J.; Wells, G.P. The Science of Life: A Summary of Contemporary Knowledge About Life and Its Possibilities; Cassell and Company: London, UK, 1929; Volume I. [Google Scholar]
- Eigen, M. Selforganization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften 1971, 58, 465–523. [Google Scholar] [CrossRef]
- Solé, R.V.; Deisboeck, T.S. An error catastrophe in cancer? J. Theor. Biol. 2004, 228, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Loeb, L.A. Human cancers express mutator phenotypes: Origin, consequences and targeting. Nat. Rev. Cancer 2011, 11, 450–457. [Google Scholar] [CrossRef]
- Maley, C.C.; Aktipis, A.; Graham, T.A.; Sottoriva, A.; Boddy, A.M.; Janiszewska, M.; Silva, A.F.; Gerlinger, M.; Yuan, Y.; Pienta, K.J.; et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 2017, 17, 605–619. [Google Scholar] [CrossRef]
- Kajita, A.; Yamamura, M.; Kohara, Y. Computer simulation of the cellular arrangement using physical model in early cleavage of the nematode Caenorhabditis elegans. Bioinformatics 2003, 19, 704–716. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Nijjer, J.; Lu, H.; Kothari, M.; Alert, R.; Cohen, T.; Yan, J. Morphogenesis and cell ordering in confined bacterial biofilms. Proc. Natl. Acad. Sci. USA 2021, 118, e2107107118. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Pomeau, Y.; de Pazzis, O. Time evolution of a two-dimensional classical lattice system. Phys. Rev. Lett. 1973, 31, 276–279. [Google Scholar] [CrossRef]
- Deutsch, A.; Dormann, S. Cellular Automaton Modeling of Biological Pattern Formation; Birkhäuser: Boston, MA, USA, 2005. [Google Scholar]
- He, F.; Wen, Y.; Deng, J.; Lin, X.; Lu, L.J.; Jiao, R.; Ma, J. Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell 2008, 15, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Badyaev, A.V.; Uller, T. Parental effects in ecology and evolution: Mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1169–1177. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brun-Usan, M.; de Juan García, J.; Latorre, R. A Minimal CA-Based Model Capturing Evolutionarily Relevant Features of Biological Development. Mathematics 2025, 13, 3238. https://doi.org/10.3390/math13193238
Brun-Usan M, de Juan García J, Latorre R. A Minimal CA-Based Model Capturing Evolutionarily Relevant Features of Biological Development. Mathematics. 2025; 13(19):3238. https://doi.org/10.3390/math13193238
Chicago/Turabian StyleBrun-Usan, Miguel, Javier de Juan García, and Roberto Latorre. 2025. "A Minimal CA-Based Model Capturing Evolutionarily Relevant Features of Biological Development" Mathematics 13, no. 19: 3238. https://doi.org/10.3390/math13193238
APA StyleBrun-Usan, M., de Juan García, J., & Latorre, R. (2025). A Minimal CA-Based Model Capturing Evolutionarily Relevant Features of Biological Development. Mathematics, 13(19), 3238. https://doi.org/10.3390/math13193238

