Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters
Abstract
:1. Introduction
2. Joint Estimation
2.1. Estimating Equations and Their Derivatives
2.2. First-Order Asymptotics
3. Stochastic Expansions with Nuisance Parameters
4. Approximate Moments with Nuisance Parameters
5. Illustrations
5.1. Ordinary Least Squares with Nuisance Parameters
5.2. Regression-Variance Problem
5.3. Two-Stage Least Squares
6. An Alternative Approach
7. Numerical Illustration
8. Conclusions
9. Derivations
- Regression-Variance Problem
- Derivations for Two-Stage Least Squares
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rilstone, P.; Ullah, A. The sampling bias of Heckman’s sample bias estimator. In Recent Advances in Statistical Methods; Chaubey, Y.P., Ed.; World Scientific Publishing: London, UK, 2001. [Google Scholar]
- Newey, W.K.; Smith, R. Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators. Econometrica 2004, 72, 219–255. [Google Scholar]
- Nagar, A.L. The Bias and Moments Matrix of the General k-Class Estimators of the Parameters in Structural Equations. Econometrica 1959, 27, 575–595. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biomelrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Rilstone, P.; Srivastava, V.K.; Ullah, A. The second-order bias and mean squared error of nonlinear estimators. J. Econom. 1996, 75, 369–395. [Google Scholar] [CrossRef]
- Hahn, J.; Newey, W. Jackknife and Analytical Bias Reduction for Nonlinear Panel Models. Econometrica 2004, 72, 1295–1319. [Google Scholar] [CrossRef]
- Bao, Y.; Ullah, A. On skewness and kurtosis of econometric estimators. Econom. J. 2009, 12, 232–247. [Google Scholar] [CrossRef]
- Iglesias, E. First and Second Order Asymptotic Bias Correction of Nonlinear Estimators in a Non-Parametric Setting and an Application to the Smoothed Maximum Score Estimator. Stud. Nonlinear Dyn. Econom. 2010, 14, 1–28. [Google Scholar] [CrossRef]
- Chen, Q.; Giles, D.E. Finite-sample properties of the maximum likelihood estimator for the binary logit model with random covariates. Stat. Pap. 2012, 53, 409–426. [Google Scholar] [CrossRef]
- Khundi, G.; Rilstone, P. Simplified Matrix Methods for Multivariate Edgeworth Expansions. J. Quant. Econ. 2020, 18, 293–326. [Google Scholar]
- Rilstone, P. Higher-Order Stochastic Expansions and Approximate Moments for Non-linear Models with Heterogeneous Observations. J. Quant. Econ. 2021, 19, 99–120. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Prentice Hall: New York, NY, USA, 2012. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hansen, L.P.; Heaton, J.; Yaron, A. Finite-Sample Properties of Some Alternative GMM Estimators. J. Bus. Econ. Stat. 1996, 14, 262–280. [Google Scholar] [CrossRef]
- Rothenberg, T.J. Approximating the distributions of econometric estimators and test statistics. In Handbook of Econometrics; Griliches, Z., Intriligator, M.D., Eds.; Elsevier Science Inc.: New York, NY, USA, 1984; Volume 2, Charpter 15. [Google Scholar]
- Nelson, C.R.; Startz, R. Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator. Econometrica 1990, 58, 967–976. [Google Scholar] [CrossRef]
- Bound, J.; Jaeger, D.A.; Baker, R.M. Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogeneous Explanatory Variable is Weak. J. Am. Stat. Assoc. 1995, 90, 443–450. [Google Scholar] [CrossRef]
- Staiger, D.; Stock, J.H. Instrumental variables regression with weak instruments. Econometrica 1997, 65, 557–586. [Google Scholar] [CrossRef]
- Kleibergen, F. Improved Accuracy of Weak Instrument Robust GMM Statistics Through Bootstrap and Edgeworth Approximations; University of Amsterdam: Amsterdam, The Netherlands, 2019. [Google Scholar]
OLS | ||||
---|---|---|---|---|
0.50 | 0.3733 | −0.0342 | −0.0050 | 0.0234 |
0.75 | 0.5591 | −0.0531 | −0.0095 | 0.0341 |
1.00 | 0.7449 | −0.0721 | −0.0139 | 0.0447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rilstone, P. Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters. Mathematics 2025, 13, 179. https://doi.org/10.3390/math13020179
Rilstone P. Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters. Mathematics. 2025; 13(2):179. https://doi.org/10.3390/math13020179
Chicago/Turabian StyleRilstone, Paul. 2025. "Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters" Mathematics 13, no. 2: 179. https://doi.org/10.3390/math13020179
APA StyleRilstone, P. (2025). Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters. Mathematics, 13(2), 179. https://doi.org/10.3390/math13020179