A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Multi-Scale Blur Maps
3.2. Regularization
3.3. Teaching-Learning-Based Optimization
Algorithm 1: Pseudo-code for the teaching-learning-based optimization scheme for optimal weight vector for combining multi-scale blur maps. |
|
3.4. Blur Map
4. Results
4.1. Experimental Setup
4.2. Ablation Study
4.3. Comparative Analysis
4.4. Computational Cost Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arbeláez, P.; Hariharan, B.; Gu, C.; Gupta, S.; Bourdev, L.; Malik, J. Semantic segmentation using regions and parts. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3378–3385. [Google Scholar]
- Navalpakkam, V.; Itti, L. An integrated model of top-down and bottom-up attention for optimizing detection speed. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2049–2056. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Suetens, P. Fundamentals of Medical Imaging; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Carmigniani, J.; Furht, B. Augmented reality: An overview. In Handbook of Augmented Reality; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–46. [Google Scholar]
- Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S.T.; Freeman, W.T. Removing Camera Shake from a Single Photograph. ACM Trans. Graph. 2006, 25, 787–794. [Google Scholar] [CrossRef]
- Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 233–240. [Google Scholar]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding and evaluating blind deconvolution algorithms. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971. [Google Scholar]
- Shan, Q.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. Acm Trans. Graph. (tog) 2008, 27, 1–10. [Google Scholar]
- Liu, X.; Jin, Z.; Jiang, H.; Miao, X.; Chen, J.; Lin, Z. Quality assessment for inspection images of power lines based on spatial and sharpness evaluation. IET Image Process. 2022, 16, 356–364. [Google Scholar] [CrossRef]
- Yue, G.; Hou, C.; Gu, K.; Zhou, T.; Zhai, G. Combining local and global measures for DIBR-synthesized image quality evaluation. IEEE Trans. Image Process. 2018, 28, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, P.; Xu, X.; Li, L.; Chang, C.C. No-reference image blur assessment based on response function of singular values. Symmetry 2018, 10, 304. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, R.; Wu, Q. A structural variation classification model for image quality assessment. IEEE Trans. Multimed. 2017, 19, 1837–1847. [Google Scholar] [CrossRef]
- Li, Y.; Po, L.M.; Xu, X.; Feng, L.; Yuan, F.; Cheung, C.H.; Cheung, K.W. No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing 2015, 154, 94–109. [Google Scholar] [CrossRef]
- Li, D.; Jiang, T.; Lin, W.; Jiang, M. Which has better visual quality: The clear blue sky or a blurry animal? IEEE Trans. Multimed. 2018, 21, 1221–1234. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Yi, X.; Eramian, M. LBP-based segmentation of defocus blur. IEEE Trans. Image Process. 2016, 25, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhu, H.; Li, X.; Li, X. Classifying discriminative features for blur detection. IEEE Trans. Cybern. 2015, 46, 2220–2227. [Google Scholar] [CrossRef]
- Xu, G.; Quan, Y.; Ji, H. Estimating defocus blur via rank of local patches. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5371–5379. [Google Scholar]
- Karaali, A.; Jung, C.R. Edge-based defocus blur estimation with adaptive scale selection. IEEE Trans. Image Process. 2017, 27, 1126–1137. [Google Scholar] [CrossRef]
- Elder, J.H.; Zucker, S.W. Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 699–716. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Z.; Su, Z.; Yang, M.H. Deblurring text images via L0-regularized intensity and gradient prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2901–2908. [Google Scholar]
- Pan, J.; Sun, D.; Pfister, H.; Yang, M.H. Blind image deblurring using dark channel prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1628–1636. [Google Scholar]
- Su, B.; Lu, S.; Tan, C.L. Blurred image region detection and classification. In Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, AZ, USA, 28 November–1 December 2011; pp. 1397–1400. [Google Scholar]
- Alireza Golestaneh, S.; Karam, L.J. Spatially-varying blur detection based on multiscale fused and sorted transform coefficients of gradient magnitudes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5800–5809. [Google Scholar]
- Shi, J.; Xu, L.; Jia, J. Discriminative blur detection features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2965–2972. [Google Scholar]
- Tang, C.; Wu, J.; Hou, Y.; Wang, P.; Li, W. A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Signal Process. Lett. 2016, 23, 1652–1656. [Google Scholar] [CrossRef]
- Couzinie-Devy, F.; Sun, J.; Alahari, K.; Ponce, J. Learning to estimate and remove non-uniform image blur. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1075–1082. [Google Scholar]
- Shi, J.; Xu, L.; Jia, J. Just noticeable defocus blur detection and estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 657–665. [Google Scholar]
- Andrade, J. A Survey of Blur Detection and Sharpness Assessment Methods; Morgan & Claypool Publishers: San Rafael, CA, USA, 2021. [Google Scholar]
- Zhou, G.; Zhou, Y.; Deng, W.; Yin, S.; Zhang, Y. Advances in teaching-learning-based optimization algorithm: A comprehensive survey. Neurocomputing 2023, 561, 126898. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Xie, Z.; Ai, Y.; Zhang, W. Local sharpness failure detection of camera module lens based on image blur assessment. Appl. Intell. 2023, 53, 11241–11250. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Wu, J.; Xie, S.; Agaian, S. Perception-guided defocus blur detection based on SVD feature. Image Vis. Comput. 2023, 140, 104845. [Google Scholar] [CrossRef]
- Guha, I.; Saha, P. A model-independent method for local blur estimation and its application to edge detection. Multimed. Tools Appl. 2023, 82, 25779–25793. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Kang, K.; Ouyang, W.; Li, H.; Wang, X. Object detection from video tubelets with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 817–825. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. “zero-shot” super-resolution using deep internal learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3118–3126. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Park, J.; Tai, Y.W.; Cho, D.; So Kweon, I. A unified approach of multi-scale deep and hand-crafted features for defocus estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1736–1745. [Google Scholar]
- Zhao, W.; Zhao, F.; Wang, D.; Lu, H. Defocus blur detection via multi-stream bottom-top-bottom fully convolutional network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3080–3088. [Google Scholar]
- Huang, R.; Feng, W.; Fan, M.; Wan, L.; Sun, J. Multiscale blur detection by learning discriminative deep features. Neurocomputing 2018, 285, 154–166. [Google Scholar] [CrossRef]
- Purohit, K.; Shah, A.B.; Rajagopalan, A. Learning based single image blur detection and segmentation. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2202–2206. [Google Scholar]
- Zhang, S.; Shen, X.; Lin, Z.; Měch, R.; Costeira, J.P.; Moura, J.M. Learning to understand image blur. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6586–6595. [Google Scholar]
- Li, H.; Qian, W.; Nie, R.; Cao, J.; Liu, P.; Xu, D. RGB-D mutual guidance for semi-supervised defocus blur detection. Knowl.-Based Syst. 2022, 255, 109682. [Google Scholar] [CrossRef]
- Li, H.; Qian, W.; Cao, J.; Liu, P. Improving defocus blur detection via adaptive supervision prior-tokens. Image Vis. Comput. 2023, 140, 104842. [Google Scholar] [CrossRef]
- Li, H.; Qian, W.; Cao, J.; Nie, R.; Liu, P.; Xu, D. Multi-Interactive Enhanced for Defocus Blur Estimation. IEEE Trans. Comput. Imaging 2024, 10, 640–652. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, M.; Wei, F.; Wang, H.; He, Y.; Lu, H. Defocus blur detection attack via mutual-referenced feature transfer. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 9162–9173. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Mahmood, M.T. Improving defocus blur measures using robust regularization. ICT Express 2022, 8, 468–472. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, F.; Wang, D.; Lu, H. Defocus blur detection via multi-stream bottom-top-bottom network. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 1884–1897. [Google Scholar] [CrossRef]
- Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar]
- Levin, A.; Lischinski, D.; Weiss, Y. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 228–242. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Phan, T.D.; Chandler, D.M. S3: A spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 2011, 21, 934–945. [Google Scholar] [CrossRef]
- Chen, D.J.; Chen, H.T.; Chang, L.W. Fast defocus map estimation. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3962–3966. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
Population | Iterations | ||||
---|---|---|---|---|---|
Size | 1 | 20 | 50 | 100 | 150 |
50 | 0.2 | 1.8 | 4.2 | 8.2 | 11.9 |
100 | 0.3 | 2.5 | 8.3 | 16.2 | 24.1 |
150 | 0.5 | 5.2 | 12.4 | 24.1 | 36.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.M.; Mahmood, M.T. A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images. Mathematics 2025, 13, 187. https://doi.org/10.3390/math13020187
Khan SM, Mahmood MT. A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images. Mathematics. 2025; 13(2):187. https://doi.org/10.3390/math13020187
Chicago/Turabian StyleKhan, Sana Munir, and Muhammad Tariq Mahmood. 2025. "A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images" Mathematics 13, no. 2: 187. https://doi.org/10.3390/math13020187
APA StyleKhan, S. M., & Mahmood, M. T. (2025). A Teacher-Learning-Based Optimization Approach for Blur Detection in Defocused Images. Mathematics, 13(2), 187. https://doi.org/10.3390/math13020187