Chaotic Dynamics Analysis and FPGA Implementation Based on Gauss Legendre Integral
Abstract
:1. Introduction
2. Lorenz System
2.1. Lyapunov Exponent Analysis
2.2. Bifurcation and Poincare Section Analysis
3. Duffing System
3.1. Lyapunov Exponent Analysis
3.2. Bifurcation Analysis
4. Hidden Attractor System
4.1. Lyapunov Exponent Analysis
4.2. Bifurcation Analysis
5. Chaotic Basin of Attraction Estimation Algorithm Based on Gauss–Legendre Integral
5.1. Basin of Attraction of Duffing Systems
5.2. Basin of Attraction of System (13)
6. Analysis of Multi-Wing Hidden Attractors Based on Gauss–Legendre Integral
6.1. Lyapunov Exponent and Bifurcation Analysis
6.2. Basin of Attraction of System (16)
7. FPGA Implementation of Chaotic System Based on Gauss–Legendre Integral
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trefethen, L.N. Exactness of quadrature formulas. Siam Rev. 2022, 64, 132–150. [Google Scholar] [CrossRef]
- Burg, C.O. Derivative-based closed Newton–Cotes numerical quadrature. Appl. Math. Comput. 2012, 218, 7052–7065. [Google Scholar] [CrossRef]
- Shahsavaran, A. Application of Newton–Cotes quadrature rule for nonlinear Hammerstein integral equations. Iran. J. Numer. Anal. Optim. 2021, 11, 385–399. [Google Scholar]
- Fornberg, B. Improving the accuracy of the trapezoidal rule. SIAM Rev. 2021, 63, 167–180. [Google Scholar] [CrossRef]
- Hale, N.; Trefethen, L.N. New quadrature formulas from conformal maps. SIAM J. Numer. Anal. 2008, 46, 930–948. [Google Scholar] [CrossRef]
- Yu, F.; Xu, S.; Lin, Y.; Gracia, Y.M.; Yao, W.; Cai, S. Dynamic Analysis, Image Encryption Application and FPGA Implementation of a Discrete Memristor-Coupled Neural Network. Int. J. Bifurc. Chaos 2024, 34, 2450068. [Google Scholar] [CrossRef]
- Liao, Z.; Ouyang, J.; Ma, M. Dual-attribute ring-star neural network. Nonlinear Dyn. 2024. [Google Scholar] [CrossRef]
- Luo, D.; Wang, C.; Deng, Q.; Sun, Y. Dynamics in a memristive neural network with three discrete heterogeneous neurons and its application. Nonlinear Dyn. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Deng, Q.; Yang, G. Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions. Chaos Solitons Fractals 2024, 187, 115471. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Deng, Z.; Yang, G. Memristive Tabu Learning Neuron Generated Multi-Wing Attractor With FPGA Implementation and Application in Encryption. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Wang, C. An Image Encryption Algorithm Based on Tabu Search and Hyperchaos. Int. J. Bifurc. Chaos 2024, 34, 2450170. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, J.; Chen, C.; Wu, L.; Lu, M.; Ouyang, A. A New-Type Zeroing Neural Network Model and Its Application in Dynamic Cryptography. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 1–16. [Google Scholar] [CrossRef]
- Feng, W.; Yang, J.; Zhao, X.; Qin, Z.; Zhang, J.; Zhu, Z.; Wen, H.; Qian, K. A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps. Mathematics 2024, 12, 3917. [Google Scholar] [CrossRef]
- Yu, F.; Lin, Y.; Yao, W.; Cai, S.; Lin, H.; Li, Y. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT. Neural Netw. 2025, 182, 106904. [Google Scholar] [CrossRef]
- Gao, S.; Iu, H.H.C.; Mou, J.; Erkan, U.; Liu, J.; Wu, R.; Tang, X. Temporal action segmentation for video encryption. Chaos Solitons Fractals 2024, 183, 114958. [Google Scholar] [CrossRef]
- Kumari, S.; Dua, M.; Dua, S.; Dhingra, D. A novel Cosine-Cosine chaotic map-based video encryption scheme. J. Eng. Appl. Sci. 2024, 71, 36. [Google Scholar] [CrossRef]
- Gao, S.; Iu, H.H.C.; Wang, M.; Jiang, D.; El-Latif, A.A.A.; Wu, R.; Tang, X. Design, Hardware Implementation, and Application in Video Encryption of the 2-D Memristive Cubic Map. IEEE Internet Things J. 2024, 11, 21807–21815. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, H.; Tan, F.; Liu, K. Delay-independent control for synchronization of memristor-based BAM neural networks with parameter perturbation and strong mismatch via finite-time technology. Trans. Inst. Meas. Control 2024, 46, 2035–2047. [Google Scholar] [CrossRef]
- Tan, F.; Zhou, L.; Lu, J.; Zhang, H. Fixed-time synchronization in multilayer networks with delay Cohen–Grossberg neural subnets via adaptive quantitative control. Asian J. Control 2024, 26, 446–455. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, H.; Tan, F. Unified quantified adaptive control for multiple-time stochastic synchronization of coupled memristive neural networks. Neurocomputing 2024, 577, 127384. [Google Scholar] [CrossRef]
- Ma, M.; Xiong, K.; Li, Z.; He, S. Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk. Chin. Phys. B 2024, 33, 028706. [Google Scholar] [CrossRef]
- Wan, Q.; Liu, J.; Liu, T.; Sun, K.; Qin, P. Memristor-based circuit design of episodic memory neural network and its application in hurricane category prediction. Neural Netw. 2024, 174, 106268. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Feng, C.; Wang, N.; Liu, A.; Xu, Q. Fast-slow dynamics in a memristive ion channel-based bionic circuit. Cogn. Neurodyn. 2024, 18, 3901–3913. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ding, X.; Wang, N.; Chen, B.; Parastesh, F.; Chen, M. Spiking activity in a memcapacitive and memristive emulator-based bionic circuit. Chaos Solitons Fractals 2024, 187, 115339. [Google Scholar] [CrossRef]
- Xu, Q.; Ding, X.; Chen, B.; Parastesh, F.; Ho-Ching Iu, H.; Wang, N. A Universal Configuration Framework for Mem-Element-Emulator-Based Bionic Firing Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 4120–4130. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, W.; Xiao, X.; Yao, W.; Cai, S.; Zhang, J.; Wang, C.; Li, Y. Dynamic analysis and field-programmable gate array implementation of a 5D fractional-order memristive hyperchaotic system with multiple coexisting attractors. Fractal Fract. 2024, 8, 271. [Google Scholar] [CrossRef]
- He, J.; Cui, L.; Sun, J.; Huang, P.; Huang, Y. Chaotic dynamics analysis of double inverted pendulum with large swing angle based on Hamiltonian function. Nonlinear Dyn. 2022, 108, 4373–4384. [Google Scholar] [CrossRef]
- Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 2024, 171, 85–103. [Google Scholar] [CrossRef]
- Yu, F.; Xu, S.; Lin, Y.; He, T.; Wu, C.; Lin, H. Design and Analysis of a Novel Fractional-Order System with Hidden Dynamics, Hyperchaotic Behavior and Multi-Scroll Attractors. Mathematics 2024, 12, 2227. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Zhang, Y.; Cao, Y. A New Hyperchaotic Map Based on Discrete Memristor and Meminductor: Dynamics Analysis, Encryption Application, and DSP Implementation. IEEE Trans. Ind. Electron. 2024, 71, 5094–5104. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Chen, G. Design and Performance Analysis of Discrete Memristive Hyperchaotic Systems With Stuffed Cube Attractors and Ultraboosting Behaviors. IEEE Trans. Ind. Electron. 2024, 71, 7819–7828. [Google Scholar] [CrossRef]
- Wang, N.; Cui, M.; Yu, X.; Shan, Y.; Xu, Q. Generation of no-equilibrium multi-fold chaotic attractor for image processing and security. Appl. Math. Model. 2024, 133, 271–285. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Y. Image encryption algorithm based on COA and hyperchaotic Lorenz system. Nonlinear Dyn. 2024, 112, 10611–10632. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Naveen, S.; Parthiban, V. Existence, Uniqueness and Error Analysis of Variable-Order Fractional Lorenz System with Various Type of Delays. Int. J. Bifurc. Chaos 2024, 34, 2450152. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, H.; Zhang, X.; Han, X.; Han, M.; Bi, Q. Frequency switching leads to distinctive fast–slow behaviors in Duffing system. Chaos Solitons Fractals 2024, 186, 115217. [Google Scholar] [CrossRef]
- Duffing, G. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung; Number 41–42; Vieweg: Braunschweig, Germany, 1918. [Google Scholar]
- Wang, Y.; Zhang, J.; Wang, W.; Mao, G.; Hong, J.; Fang, B. Influence of the VI-NES on the resonance response regime and amplitude–frequency characteristics for the duffing system. Nonlinear Dyn. 2025, 113, 63–85. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, H.; Zhang, Y.; An, X. A New Memristive System with Extreme Multistability and Hidden Chaotic Attractors and with Application to Image Encryption. Int. J. Bifurc. Chaos 2024, 34, 2450010. [Google Scholar] [CrossRef]
- Cui, L.; Luo, W.; Ou, Q. Analysis of basins of attraction of new coupled hidden attractor system. Chaos Solitons Fractals 2021, 146, 110913. [Google Scholar] [CrossRef]
- Danca, M.F. Chaotic hidden attractor in a fractional order system modeling the interaction between dark matter and dark energy. Commun. Nonlinear Sci. Numer. Simul. 2024, 131, 107838. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Cui, L.; Lin, H.; Yu, F. Chaotic Dynamics Analysis and FPGA Implementation Based on Gauss Legendre Integral. Mathematics 2025, 13, 201. https://doi.org/10.3390/math13020201
Wen L, Cui L, Lin H, Yu F. Chaotic Dynamics Analysis and FPGA Implementation Based on Gauss Legendre Integral. Mathematics. 2025; 13(2):201. https://doi.org/10.3390/math13020201
Chicago/Turabian StyleWen, Li, Li Cui, Hairong Lin, and Fei Yu. 2025. "Chaotic Dynamics Analysis and FPGA Implementation Based on Gauss Legendre Integral" Mathematics 13, no. 2: 201. https://doi.org/10.3390/math13020201
APA StyleWen, L., Cui, L., Lin, H., & Yu, F. (2025). Chaotic Dynamics Analysis and FPGA Implementation Based on Gauss Legendre Integral. Mathematics, 13(2), 201. https://doi.org/10.3390/math13020201