The Inconsistency of the Algorithms of Jaro–Winkler and Needleman–Wunsch Applied to DNA Chain Similarity Results
Abstract
:1. Introduction and Motivation
- Firstly, if we talk specifically about mammals, whose genomes are the object of the research of this paper, then one of three options is usually used as the object for analysis:
- –
- Mitochondrial DNA (mt DNA, which will be the main object of this research);
- –
- The “tails” of Y chromosomes;
- –
- The main histocompatibility complex.
- Secondly, different algorithms are used to determine the distances between genomes, and, according to the author’s opinion, they are all modifications of the Levenshtein metric (sometimes significant modifications, as a result of which their relation to the Levenshtein metric is not always obvious). At the same time, in this paper, we do not engage in comparing these different algorithms.
- Thirdly, the main difficulty encountered in calculating the distance between such sequences is their very long length. For example, the length of the human mt DNA sequence, i.e., very short DNA, exceeds 16,000 characters, while the total length of human DNA exceeds 3,000,000,000 characters. Therefore, it is impossible to solve real problems with the exact calculation of the Levenshtein distance, and all the algorithms used in them can be called heuristic.
- Fourthly, it is possible to conduct distance studies either before “combining triples of letters into one” or after such combining. However, for the task described in this paper, this is not fundamental.
- Fifthly, for 4 variants of nucleotides in the genome, natural selection results not in 64 variants of the triples but in 21 variants only. Each of these options can be considered an encoded letter. Moreover, as is written in the popular scientific literature (we shall not give specific references), at least four artificial amino acids have been designed, which can “on full grounds” enter artificial DNA chains, and the triples of amino acids in such artificial DNA chains can be replaced by fours or even fives.
However, when considering such different algorithms for determining the distances between genomes, the author has long had an assumption about the great inconsistency of the Jaro–Winkler and Needleman–Wunsch algorithms. The main subject of the paper is the quantitative verification of this hypothesis. We shall show in the paper that it is fulfilled, i.e., these algorithms are not consistent.
- Firstly, everything said here is described in more detail below, but we do not provide detailed content by section in the introduction.
- Secondly, the technique considered in the paper, which can be called an algorithm for determining the consistency of algorithms for calculating distances between lines, is applicable to any pair of such distance calculation algorithms and to any set of types.
- Thirdly,
- –
- Algorithms for determining the distances between two specific lines (in particular, DNA sequences) are heuristic due to the total size of the data under consideration;
- –
- Algorithms for calculating the badness for triples of DNA sequences are therefore heuristic algorithms for analyzing heuristic algorithms;
- –
- Algorithms for determining consistency between two distance calculation algorithms can therefore be called heuristic algorithms for analyzing heuristic algorithms designed to analyze heuristic algorithms.
In other words, a “triple embedding” appears.
2. Preliminaries: DNA Chains, Their Distance and Statistical Characteristics
- The ancestors of both of apes and humans diverged about 7,000,000 years ago;
- The ancestors of chimpanzees and bonobos diverged about 2,500,000 years ago.
Sides 1,2 | Angles 2 | Bad. (0) | Bad. (1) | Bad. (2) | Bad. (3) | Bad. (5) |
---|---|---|---|---|---|---|
, , | , , | |||||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
− | ||||||
− |
3. Problem Statement
- Firstly, there are not very many such elements. In square matrices of size 32, we have 496 elements, which are located from the top of the main diagonal.
- Secondly, based on the calculations performed, we came to the conclusion that the results of such a correlation comparison are not very informative. The values of the correlation coefficient (with different methods of calculating it) do not differ much from (specifically, from to ), and this fact, apparently, does not allow us to draw unambiguous conclusions.
- Thirdly, we are considering a specific task (and not just comparing any two abstract matrices), and, as we noted in Section 2, our matrices must have an important special property, i.e., a small value of badness (we use the Bad. (0) value), and, moreover, they also have in our case the consistency of these values for both matrices.
4. Algorithms, Methods and Some More About the Motivation
- Multiple chromosomal aberrations;
- The deletion of a huge section;
- The transition of another section to the other chromosome, due to which humans have one pair of autosomes fewer;
- The reversal of another section.
- The absence of a massive, protruding jaw in humans, and, consequently, a significantly different structure of the oral cavity, which is the most important resonator in speech formation;
- The structure of the nose (as well as the larynx) is significantly different;
- Lack of wool cover;
- Walking upright;
- Rebuilt work of sebaceous and sweat glands;
- Reconstruction of the upper part of the skull;
- Many other things that distinguish humans from anthropoids in general.
suggests the need to continue detailed studies of DNA strands, in particular, to analyze their similarity.
5. Description of Computational Experiments and the Results
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 000 | 541 | 677 | 583 | 592 | 541 | 589 | 536 | 562 | 633 | 465 | 610 | 530 | 370 | 512 | 565 | 545 | 800 | 624 | 640 | 520 | 556 | 548 | 562 | 515 | 570 | 726 | 524 | 511 | 589 | 589 | 540 |
2 | 541 | 000 | 635 | 387 | 342 | 369 | 396 | 381 | 386 | 733 | 600 | 686 | 463 | 542 | 409 | 549 | 349 | 722 | 698 | 708 | 515 | 440 | 401 | 543 | 462 | 455 | 681 | 388 | 452 | 464 | 383 | 532 |
3 | 677 | 635 | 000 | 665 | 676 | 627 | 668 | 626 | 670 | 714 | 728 | 739 | 666 | 678 | 655 | 777 | 617 | 731 | 744 | 760 | 737 | 661 | 663 | 767 | 692 | 680 | 690 | 646 | 648 | 710 | 661 | 753 |
4 | 583 | 387 | 665 | 000 | 334 | 396 | 385 | 384 | 396 | 767 | 630 | 727 | 457 | 579 | 422 | 577 | 383 | 677 | 723 | 733 | 546 | 447 | 411 | 571 | 442 | 434 | 637 | 403 | 474 | 447 | 378 | 568 |
5 | 592 | 342 | 676 | 334 | 000 | 384 | 395 | 321 | 397 | 777 | 644 | 736 | 481 | 584 | 433 | 570 | 375 | 672 | 742 | 751 | 554 | 451 | 421 | 579 | 429 | 444 | 650 | 418 | 498 | 453 | 393 | 562 |
6 | 541 | 369 | 627 | 396 | 384 | 000 | 401 | 319 | 406 | 706 | 581 | 665 | 455 | 528 | 387 | 526 | 383 | 753 | 676 | 675 | 510 | 458 | 381 | 499 | 481 | 457 | 693 | 320 | 436 | 475 | 400 | 527 |
7 | 589 | 396 | 668 | 385 | 395 | 401 | 000 | 397 | 389 | 763 | 630 | 727 | 471 | 580 | 425 | 584 | 392 | 695 | 738 | 741 | 556 | 429 | 346 | 573 | 458 | 451 | 657 | 400 | 488 | 463 | 382 | 573 |
8 | 536 | 381 | 626 | 384 | 321 | 319 | 397 | 000 | 400 | 723 | 595 | 691 | 453 | 537 | 396 | 527 | 345 | 724 | 687 | 696 | 518 | 457 | 392 | 534 | 474 | 457 | 685 | 312 | 448 | 470 | 392 | 526 |
9 | 562 | 386 | 670 | 396 | 397 | 406 | 389 | 400 | 000 | 747 | 585 | 700 | 462 | 561 | 415 | 565 | 390 | 725 | 703 | 722 | 532 | 448 | 403 | 571 | 467 | 469 | 681 | 409 | 477 | 482 | 327 | 546 |
10 | 633 | 733 | 714 | 767 | 777 | 706 | 763 | 723 | 747 | 000 | 628 | 635 | 706 | 661 | 676 | 699 | 723 | 674 | 653 | 678 | 634 | 720 | 693 | 677 | 767 | 758 | 538 | 712 | 697 | 793 | 775 | 656 |
11 | 465 | 600 | 728 | 630 | 644 | 581 | 630 | 595 | 585 | 628 | 000 | 560 | 584 | 462 | 549 | 535 | 594 | 859 | 568 | 579 | 494 | 596 | 589 | 526 | 636 | 608 | 790 | 582 | 560 | 631 | 639 | 464 |
12 | 610 | 686 | 739 | 727 | 736 | 665 | 727 | 691 | 700 | 635 | 560 | 000 | 673 | 610 | 631 | 601 | 687 | 871 | 379 | 381 | 556 | 688 | 669 | 589 | 724 | 706 | 795 | 667 | 646 | 729 | 731 | 571 |
13 | 530 | 463 | 666 | 457 | 481 | 455 | 471 | 453 | 462 | 706 | 584 | 673 | 000 | 535 | 446 | 467 | 449 | 741 | 665 | 678 | 434 | 391 | 454 | 454 | 414 | 402 | 678 | 463 | 454 | 413 | 461 | 448 |
14 | 370 | 542 | 678 | 579 | 584 | 528 | 580 | 537 | 561 | 661 | 462 | 610 | 535 | 000 | 502 | 566 | 545 | 790 | 614 | 627 | 526 | 545 | 539 | 558 | 578 | 549 | 723 | 511 | 492 | 545 | 582 | 539 |
15 | 512 | 409 | 655 | 422 | 433 | 387 | 425 | 396 | 415 | 676 | 549 | 631 | 446 | 502 | 000 | 515 | 400 | 772 | 630 | 642 | 477 | 478 | 395 | 506 | 510 | 483 | 705 | 390 | 437 | 509 | 426 | 493 |
16 | 565 | 549 | 777 | 577 | 570 | 526 | 584 | 527 | 565 | 699 | 535 | 601 | 467 | 566 | 515 | 000 | 529 | 913 | 580 | 571 | 401 | 484 | 548 | 350 | 483 | 461 | 836 | 528 | 513 | 481 | 589 | 379 |
17 | 545 | 349 | 617 | 383 | 375 | 383 | 392 | 345 | 390 | 723 | 594 | 687 | 449 | 545 | 400 | 529 | 000 | 719 | 684 | 701 | 514 | 442 | 391 | 543 | 462 | 461 | 673 | 376 | 443 | 468 | 387 | 503 |
18 | 800 | 722 | 731 | 677 | 672 | 753 | 695 | 724 | 725 | 674 | 859 | 871 | 741 | 790 | 772 | 913 | 719 | 000 | 871 | 884 | 851 | 708 | 759 | 897 | 664 | 690 | 538 | 759 | 763 | 694 | 709 | 874 |
19 | 624 | 698 | 744 | 723 | 742 | 676 | 738 | 687 | 703 | 653 | 568 | 379 | 665 | 614 | 630 | 580 | 684 | 871 | 000 | 366 | 579 | 701 | 682 | 565 | 734 | 711 | 799 | 668 | 647 | 721 | 729 | 547 |
20 | 640 | 708 | 760 | 733 | 751 | 675 | 741 | 696 | 722 | 678 | 579 | 381 | 678 | 627 | 642 | 571 | 701 | 884 | 366 | 000 | 585 | 717 | 688 | 567 | 752 | 718 | 806 | 679 | 656 | 729 | 739 | 551 |
21 | 520 | 515 | 737 | 546 | 554 | 510 | 556 | 518 | 532 | 634 | 494 | 556 | 434 | 526 | 477 | 401 | 514 | 851 | 579 | 585 | 000 | 446 | 515 | 386 | 469 | 462 | 787 | 508 | 498 | 485 | 549 | 344 |
22 | 556 | 440 | 661 | 447 | 451 | 458 | 429 | 457 | 448 | 720 | 596 | 688 | 391 | 545 | 478 | 484 | 442 | 708 | 701 | 717 | 446 | 000 | 438 | 473 | 377 | 369 | 644 | 465 | 471 | 379 | 451 | 469 |
23 | 548 | 401 | 663 | 411 | 421 | 381 | 346 | 392 | 403 | 693 | 589 | 669 | 454 | 539 | 395 | 548 | 391 | 759 | 682 | 688 | 515 | 438 | 000 | 539 | 492 | 478 | 705 | 380 | 451 | 490 | 416 | 528 |
24 | 562 | 543 | 767 | 571 | 579 | 499 | 573 | 534 | 571 | 677 | 526 | 589 | 454 | 558 | 506 | 350 | 543 | 897 | 565 | 567 | 386 | 473 | 539 | 000 | 503 | 479 | 822 | 522 | 509 | 465 | 569 | 372 |
25 | 515 | 462 | 692 | 442 | 429 | 481 | 458 | 474 | 467 | 767 | 636 | 724 | 414 | 578 | 510 | 483 | 462 | 664 | 734 | 752 | 469 | 377 | 492 | 503 | 000 | 346 | 627 | 484 | 486 | 344 | 467 | 486 |
26 | 570 | 455 | 680 | 434 | 444 | 457 | 451 | 457 | 469 | 758 | 608 | 706 | 402 | 549 | 483 | 461 | 461 | 690 | 711 | 718 | 462 | 369 | 478 | 479 | 346 | 000 | 621 | 460 | 453 | 366 | 451 | 471 |
27 | 726 | 681 | 690 | 637 | 650 | 693 | 657 | 685 | 681 | 538 | 790 | 795 | 678 | 723 | 705 | 836 | 673 | 538 | 799 | 806 | 787 | 644 | 705 | 822 | 627 | 621 | 000 | 694 | 699 | 634 | 663 | 805 |
28 | 524 | 388 | 646 | 403 | 418 | 320 | 400 | 312 | 409 | 712 | 582 | 667 | 463 | 511 | 390 | 528 | 376 | 759 | 668 | 679 | 508 | 465 | 380 | 522 | 484 | 460 | 694 | 000 | 389 | 478 | 409 | 525 |
29 | 511 | 452 | 648 | 474 | 498 | 436 | 488 | 448 | 477 | 697 | 560 | 646 | 454 | 492 | 437 | 513 | 443 | 763 | 647 | 656 | 498 | 471 | 451 | 509 | 486 | 453 | 699 | 389 | 000 | 476 | 488 | 500 |
30 | 589 | 464 | 710 | 447 | 453 | 475 | 463 | 470 | 482 | 793 | 631 | 729 | 413 | 545 | 509 | 481 | 468 | 694 | 721 | 729 | 485 | 379 | 490 | 465 | 344 | 366 | 634 | 478 | 476 | 000 | 466 | 479 |
31 | 589 | 383 | 661 | 378 | 393 | 400 | 382 | 392 | 327 | 775 | 639 | 731 | 461 | 582 | 426 | 589 | 387 | 709 | 729 | 739 | 549 | 451 | 416 | 569 | 467 | 451 | 663 | 409 | 488 | 466 | 000 | 541 |
32 | 540 | 532 | 753 | 568 | 562 | 527 | 573 | 526 | 546 | 656 | 464 | 571 | 448 | 539 | 493 | 379 | 503 | 874 | 547 | 551 | 344 | 469 | 528 | 372 | 486 | 471 | 805 | 525 | 500 | 479 | 541 | 000 |
- “Simple” means counting sequences of matrix elements above the main diagonal, while “main” means counting sequences of badness (Bad. 0) of triangles;
- “With” (unlike “without”) means that we used normalization before calculations. As usual, normalization is what we call the linear mapping of all the received data into the segment .
Option | Corr-0, Usual | Corr-1, Spearman | Corr-2, Kendall+ | Corr-3, Kendall++ |
---|---|---|---|---|
simple, with | ||||
main, without | ||||
main, with |
6. Discussion and Conclusions
- We hope to obtain a matrix for all types of monkeys (500 to 850 types, according to various sources), and at first these will be algorithms for restoring a partially filled matrix.
- This problem is best used for the Needleman–Wunsch algorithm, ignoring the rest of the described algorithms.
- The author believes that the following task is very important. This problem consists of viewing, based on the given distance matrix, all five variants of badness, and choosing “the best” of them. In previous papers and in Section 2, it was said that, ideally, this value should be equal to 0. Then, “the best” badness can be obtained by minimizing the linear combination of the considered options. At the same time, of course, functions like the identity zero are pointless to consider. Therefore, in our model, we consider a linear combination of several of the above functions for variants of badness.
- We hope to continue the consideration of the tasks described in the paper, our algorithm for calculating rank correlation [13], which can be called corr-4.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melnikov, B.; Pivneva, S.; Trifonov, M. Various algorithms, calculating distances of DNA sequences, and some computational recommendations for use such algorithms. CEUR Workshop Proc. 2017, 1902, 43–50. [Google Scholar]
- Melnikov, B.; Melnikova, E.; Pivneva, S.; Trenina, M. An approach to analysis of the similarity of DNA-sequences. CEUR Workshop Proc. 2018, 2212, 67–72. [Google Scholar]
- Melnikov, B.; Zhang, Y.; Chaikovskii, D. An inverse problem for matrix processing: An improved algorithm for restoring the distance matrix for DNA chains. Cybern. Phys. 2022, 11, 217–226. [Google Scholar] [CrossRef]
- Melnikov, B.; Chaikovskii, D. On the application of heuristics of the TSP for the task of restoring the DNA matrix. Front. Artif. Intell. Appl. 2024, 385, 36–44. [Google Scholar]
- Lagutin, M. Visual Mathematical Statistics; BINOM. Laboratoriya Znaniy: Moscow, Russia, 2012; 472p. (In Russian) [Google Scholar]
- Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer Science & Business Media: Berlin, Germany, 2013; 442p. [Google Scholar]
- Young, S.; Gilles, J. Use of 3D chaos game representation to quantify DNA sequence similarity with applications for hierarchical clustering. J. Theor. Biol. 2024, 5967, 111972. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.J.; Richards, W.G. Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 2007, 28, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Bodenhofer, U.; Bonatesta, E.; Horejs-Kainrath, C.; Hochreiter, S. Msa: An R package for multiple sequence alignment. Bioinformatics 2015, 31, 3997–3999. [Google Scholar] [CrossRef] [PubMed]
- Needleman, S.; Wunsch, C. A general method is applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Winkler, W. String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage. In Proceedings of the Survey Research Methods Sections, Anaheim, CA, USA, 6–9 August 1990; American Statistical Association: Alexandria, VA, USA, 1990; pp. 354–359. [Google Scholar]
- Cohen, J. Relative differences: The myth of 1%. Science 2007, 316, 1836. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, B.; Lysak, T. On some algorithms for comparing models of femtosecond laser radiation propagation in a medium with gold nanorods. Cybern. Phys. 2024, 13, 261–267. [Google Scholar] [CrossRef]
- Levenshtein, V. Binary codes capable of correcting. Deletions, insertions, and reversals. Sov. Phys. Dokl. 1966, 10, 707–710. [Google Scholar]
- Polavarapu, N.; Arora, G.G.; Mittal, V.; McDonald, J. Characterization and potential functional significance of human-chimpanzee large INDEL variation. Mob. DNA 2011, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, J.R.; Oliveira, W.D.d.S.; Junior, L.C.d.S.; Nascimento, F.d.S.; Moreira, R.F.C.; Ramos, A.P.d.S.; Santos-Serejo, J.A.d.; Amorim, E.P.; Jesus, R.D.M.d.; Ferreira, C.F. Diversity of Improved Diploids and Commercial Triploids from Musa spp. via Molecular Markers. Curr. Issues Mol. Biol. 2024, 46, 11783–11796. [Google Scholar] [CrossRef] [PubMed]
- Memon, J.; Patel, R.; Patel, B.N.; Patel, M.P.; Madariya, R.B.; Patel, J.K.; Kumar, S. Genetic diversity, population structure and association mapping of morphobiochemical traits in castor (Ricinus communis L.) through simple sequence repeat markers. Ind. Crops Prod. 2024, 221, 119348. [Google Scholar] [CrossRef]
- Mansueto, L.; Tandayu, E.; Mieog, J.; Garcia-de Heer, L.; Das, R.; Burn, A.; Mauleon, R.; Kretzschmar, T. HASCH—A high-throughput amplicon-based SNP-platform for medicinal cannabis and industrial hemp genotyping applications. BMC Genom. 2024, 25, 818. [Google Scholar] [CrossRef]
No. | Species of Monkeys | No. | Species of Monkeys |
---|---|---|---|
1 | Allenopithecus nigroviridis | 17 | Lagothrix lagotricha |
2 | Ateles belzebuth | 18 | Leontopithecus rosalia |
3 | Brachyteles arachnoides | 19 | Macaca fascicularis |
4 | Cacajao calvus | 20 | Macaca fuscata |
5 | Callimico goeldii | 21 | Mandrillus leucophaeus |
6 | Callithrix jacchus | 22 | Nasalis larvatus |
7 | Carlito syrichta | 23 | Nycticebus coucang |
8 | Cebuella pygmaea | 24 | Papio anubis |
9 | Cephalopachus bancanus | 25 | Presbytis melalophos |
10 | Cercocebus atys | 26 | Pygathrix nemaeus |
11 | Cercopithecus albogularis | 27 | Rhinopithecus roxellana |
12 | Chlorocebus sabaeus | 28 | Saguinus oedipus |
13 | Colobus angolensis | 29 | Saimiri boliviensis |
14 | Erythrocebus patas | 30 | Semnopithecus entellus |
15 | Galago moholi | 31 | Tarsius dentatus |
16 | Gorilla gorilla | 32 | Theropithecus gelada |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 000 | 250 | 375 | 260 | 253 | 256 | 283 | 253 | 277 | 156 | 143 | 192 | 197 | 157 | 274 | 216 | 253 | 477 | 206 | 204 | 154 | 187 | 284 | 161 | 188 | 192 | 381 | 263 | 256 | 192 | 281 | 153 |
2 | 250 | 000 | 293 | 184 | 168 | 168 | 267 | 167 | 265 | 250 | 253 | 287 | 258 | 256 | 264 | 240 | 123 | 473 | 289 | 289 | 246 | 247 | 275 | 254 | 245 | 249 | 473 | 180 | 179 | 251 | 267 | 249 |
3 | 375 | 293 | 000 | 322 | 323 | 320 | 371 | 320 | 368 | 373 | 377 | 476 | 380 | 375 | 384 | 375 | 286 | 476 | 474 | 476 | 374 | 372 | 383 | 378 | 377 | 376 | 296 | 327 | 329 | 381 | 372 | 374 |
4 | 260 | 184 | 322 | 000 | 191 | 191 | 271 | 189 | 270 | 258 | 263 | 295 | 264 | 264 | 271 | 258 | 182 | 476 | 297 | 298 | 257 | 258 | 278 | 265 | 258 | 259 | 405 | 196 | 199 | 259 | 270 | 261 |
5 | 253 | 168 | 323 | 191 | 000 | 146 | 268 | 145 | 265 | 255 | 258 | 289 | 259 | 259 | 272 | 251 | 169 | 474 | 292 | 293 | 253 | 253 | 276 | 260 | 250 | 250 | 472 | 169 | 184 | 251 | 269 | 256 |
6 | 256 | 168 | 320 | 191 | 146 | 000 | 276 | 091 | 271 | 254 | 254 | 286 | 261 | 259 | 271 | 249 | 165 | 477 | 286 | 287 | 252 | 253 | 274 | 255 | 255 | 255 | 474 | 163 | 180 | 256 | 273 | 253 |
7 | 283 | 267 | 371 | 272 | 268 | 276 | 000 | 272 | 152 | 283 | 287 | 319 | 286 | 285 | 255 | 279 | 266 | 477 | 319 | 320 | 281 | 277 | 253 | 289 | 276 | 275 | 406 | 273 | 278 | 282 | 177 | 281 |
8 | 253 | 167 | 320 | 189 | 145 | 091 | 272 | 000 | 266 | 251 | 253 | 286 | 257 | 257 | 269 | 247 | 165 | 474 | 289 | 288 | 251 | 254 | 275 | 256 | 253 | 253 | 471 | 163 | 181 | 255 | 269 | 254 |
9 | 277 | 265 | 368 | 270 | 266 | 271 | 152 | 266 | 000 | 275 | 277 | 312 | 279 | 276 | 250 | 272 | 263 | 477 | 311 | 313 | 275 | 271 | 250 | 282 | 272 | 271 | 402 | 270 | 273 | 275 | 172 | 275 |
10 | 156 | 250 | 373 | 258 | 255 | 254 | 283 | 251 | 275 | 000 | 159 | 201 | 202 | 173 | 275 | 212 | 249 | 477 | 191 | 191 | 084 | 190 | 279 | 153 | 191 | 196 | 377 | 260 | 253 | 192 | 279 | 148 |
11 | 143 | 253 | 377 | 263 | 258 | 254 | 287 | 253 | 277 | 159 | 000 | 174 | 202 | 140 | 273 | 215 | 251 | 480 | 205 | 202 | 153 | 191 | 280 | 162 | 191 | 193 | 384 | 264 | 258 | 194 | 283 | 156 |
12 | 192 | 287 | 476 | 295 | 289 | 286 | 319 | 286 | 312 | 201 | 174 | 000 | 244 | 193 | 301 | 246 | 285 | 479 | 160 | 157 | 201 | 236 | 312 | 203 | 235 | 234 | 478 | 291 | 287 | 237 | 316 | 200 |
13 | 197 | 258 | 380 | 264 | 259 | 261 | 286 | 257 | 279 | 202 | 202 | 244 | 000 | 209 | 281 | 227 | 256 | 478 | 246 | 245 | 197 | 167 | 284 | 200 | 176 | 174 | 363 | 266 | 267 | 174 | 283 | 197 |
14 | 157 | 256 | 375 | 264 | 259 | 259 | 285 | 257 | 276 | 173 | 140 | 193 | 209 | 000 | 278 | 225 | 258 | 478 | 221 | 219 | 169 | 200 | 287 | 179 | 200 | 206 | 378 | 270 | 265 | 207 | 282 | 173 |
15 | 274 | 264 | 384 | 271 | 272 | 271 | 255 | 269 | 250 | 275 | 273 | 301 | 281 | 278 | 000 | 267 | 266 | 476 | 301 | 301 | 274 | 273 | 202 | 277 | 273 | 273 | 476 | 271 | 275 | 278 | 249 | 272 |
16 | 216 | 240 | 375 | 258 | 251 | 249 | 279 | 247 | 272 | 212 | 215 | 246 | 227 | 225 | 267 | 000 | 244 | 481 | 245 | 245 | 208 | 217 | 275 | 216 | 219 | 222 | 399 | 254 | 250 | 222 | 275 | 210 |
17 | 253 | 123 | 286 | 182 | 169 | 165 | 266 | 165 | 263 | 249 | 251 | 285 | 256 | 259 | 266 | 245 | 000 | 473 | 288 | 289 | 247 | 248 | 272 | 252 | 252 | 250 | 407 | 179 | 179 | 251 | 267 | 247 |
18 | 477 | 472 | 476 | 476 | 474 | 477 | 476 | 474 | 477 | 477 | 480 | 479 | 478 | 478 | 476 | 482 | 473 | 000 | 480 | 481 | 478 | 479 | 477 | 478 | 475 | 476 | 476 | 477 | 477 | 479 | 474 | 479 |
19 | 206 | 289 | 474 | 297 | 292 | 286 | 319 | 289 | 311 | 191 | 205 | 160 | 246 | 221 | 301 | 245 | 288 | 480 | 000 | 077 | 189 | 234 | 311 | 200 | 237 | 237 | 477 | 296 | 290 | 239 | 317 | 199 |
20 | 204 | 289 | 475 | 298 | 293 | 287 | 320 | 288 | 313 | 191 | 202 | 157 | 245 | 219 | 301 | 245 | 289 | 481 | 077 | 000 | 189 | 236 | 312 | 196 | 236 | 236 | 478 | 293 | 288 | 241 | 316 | 195 |
21 | 154 | 246 | 374 | 257 | 253 | 252 | 281 | 251 | 275 | 084 | 153 | 201 | 197 | 169 | 274 | 208 | 247 | 477 | 189 | 189 | 000 | 185 | 281 | 146 | 187 | 190 | 379 | 256 | 253 | 190 | 276 | 141 |
22 | 187 | 247 | 372 | 258 | 254 | 253 | 277 | 254 | 271 | 190 | 191 | 236 | 167 | 200 | 273 | 217 | 248 | 479 | 234 | 236 | 185 | 000 | 279 | 193 | 142 | 129 | 336 | 264 | 257 | 145 | 271 | 187 |
23 | 284 | 275 | 383 | 278 | 276 | 274 | 253 | 275 | 250 | 279 | 280 | 312 | 284 | 287 | 202 | 275 | 272 | 477 | 311 | 312 | 281 | 279 | 000 | 287 | 282 | 281 | 476 | 276 | 279 | 284 | 253 | 282 |
24 | 161 | 254 | 378 | 265 | 260 | 255 | 289 | 256 | 282 | 153 | 162 | 203 | 200 | 179 | 277 | 216 | 252 | 479 | 200 | 196 | 146 | 193 | 286 | 000 | 199 | 197 | 382 | 264 | 260 | 196 | 286 | 095 |
25 | 188 | 245 | 377 | 258 | 250 | 255 | 276 | 253 | 272 | 191 | 192 | 235 | 176 | 200 | 273 | 219 | 252 | 474 | 237 | 236 | 187 | 142 | 282 | 199 | 000 | 148 | 348 | 267 | 256 | 148 | 272 | 192 |
26 | 192 | 249 | 376 | 259 | 250 | 255 | 275 | 253 | 271 | 196 | 193 | 234 | 174 | 206 | 273 | 222 | 250 | 477 | 237 | 236 | 190 | 129 | 281 | 197 | 148 | 000 | 339 | 264 | 256 | 153 | 276 | 192 |
27 | 381 | 473 | 296 | 405 | 472 | 474 | 406 | 471 | 402 | 377 | 384 | 478 | 363 | 378 | 475 | 399 | 407 | 476 | 477 | 478 | 379 | 336 | 476 | 382 | 348 | 339 | 000 | 477 | 471 | 352 | 403 | 380 |
28 | 263 | 180 | 327 | 196 | 169 | 163 | 273 | 163 | 270 | 260 | 264 | 291 | 266 | 270 | 270 | 254 | 179 | 477 | 296 | 293 | 256 | 264 | 276 | 264 | 267 | 264 | 477 | 000 | 190 | 265 | 273 | 259 |
29 | 256 | 179 | 329 | 199 | 184 | 180 | 278 | 181 | 273 | 253 | 258 | 286 | 267 | 265 | 275 | 250 | 179 | 477 | 290 | 288 | 253 | 257 | 279 | 260 | 256 | 256 | 472 | 190 | 000 | 261 | 275 | 255 |
30 | 192 | 251 | 380 | 259 | 251 | 256 | 282 | 254 | 275 | 192 | 194 | 237 | 174 | 207 | 278 | 222 | 251 | 480 | 239 | 241 | 190 | 145 | 284 | 196 | 148 | 153 | 352 | 265 | 261 | 000 | 279 | 195 |
31 | 281 | 267 | 372 | 270 | 269 | 273 | 177 | 269 | 172 | 280 | 283 | 316 | 283 | 282 | 249 | 275 | 267 | 475 | 317 | 316 | 276 | 272 | 253 | 286 | 272 | 276 | 403 | 273 | 275 | 279 | 000 | 279 |
32 | 153 | 249 | 374 | 261 | 256 | 253 | 281 | 254 | 275 | 148 | 156 | 200 | 197 | 173 | 272 | 210 | 247 | 479 | 199 | 195 | 141 | 187 | 282 | 095 | 192 | 192 | 380 | 259 | 255 | 195 | 279 | 000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikov, B. The Inconsistency of the Algorithms of Jaro–Winkler and Needleman–Wunsch Applied to DNA Chain Similarity Results. Mathematics 2025, 13, 263. https://doi.org/10.3390/math13020263
Melnikov B. The Inconsistency of the Algorithms of Jaro–Winkler and Needleman–Wunsch Applied to DNA Chain Similarity Results. Mathematics. 2025; 13(2):263. https://doi.org/10.3390/math13020263
Chicago/Turabian StyleMelnikov, Boris. 2025. "The Inconsistency of the Algorithms of Jaro–Winkler and Needleman–Wunsch Applied to DNA Chain Similarity Results" Mathematics 13, no. 2: 263. https://doi.org/10.3390/math13020263
APA StyleMelnikov, B. (2025). The Inconsistency of the Algorithms of Jaro–Winkler and Needleman–Wunsch Applied to DNA Chain Similarity Results. Mathematics, 13(2), 263. https://doi.org/10.3390/math13020263