Chaos and Dynamic Behavior of the 4D Hyperchaotic Chen System via Variable-Order Fractional Derivatives
Abstract
1. Introduction
- We address the intrinsic drawbacks of constant-order systems and offer a more practical framework for capturing memory and adaptability in nonlinear dynamics by presenting a recently developed four-dimensional (4D) hyperchaotic Chen system with variable-order fractional (VOF) derivatives in the Liouville–Caputo sense.
- The proposed system creatively exploits variable-order derivatives to enhance flexibility, enabling the chaotic dynamics to evolve with changing fractional orders. This design establishes a richer structure for analyzing dynamical transitions compared to fixed-order formulations.
- Phase-space orbits and time series for various are used in extensive numerical simulations to clearly show how the order function affects system behavior. These results demonstrate how important fractional order variability is in forming intricate dynamical responses.
- The system’s hyperchaotic nature and sensitivity to initial conditions and control parameters are confirmed by a thorough qualitative analysis that includes phase portraits, time series, and Lyapunov exponents. This method creates new avenues for methodically investigating the sensitivity and stability of VOF-based systems.
- The suggested model exhibits a wide variety of dynamic properties, proving the effectiveness and applicability of VOF calculus in simulating complex nonlinear processes. These contributions offer useful methodologies as well as theoretical insights that can direct future studies in fractional-order chaotic systems.
2. Preliminaries
- : The Liouville–Caputo fractional derivative operator, where the order of the derivative changes with time .
- : The function being differentiated.
- ξ: The integration variable.
- : The Euler gamma function.
- : The variable fractional order of the derivative, which depends on time.
- : The kernel of the integral, where α.
- : The definite integral with respect to ξ.
- : The Liouville–Caputo variable-order fractional derivative operator, where the order of the derivative changes with time .
- : The function being differentiated.
- ξ: The integration variable.
- : The Euler gamma function.
- : The variable fractional order of the derivative, which depends on time.
- : The kernel of the integral, where .
- : The definite integral with respect to ξ.
3. 4D Hyperchaotic Chen System
Divergence of the 4D Hyperchaotic Chen System
4. Fractional 4D Hyperchaotic Chen System
4.1. Stability Analysis in Fractional Framework
Equilibrium Points
- Step 1. Immediate relations
- Step 2. Solve for
- Step 3. Solve for
- Step 4. Equilibrium point (parameters)
4.2. Stability Analysis in Fractional Variable-Order System
- is the order function;
- is the input function;
- is the state function;
- and are constant matrices.
4.3. Variable Order Fractional 4D Hyperchaotic Chen System
5. Numerical Algorithms for Variable-Order Fractional Systems
6. Dynamical Analysis
6.1. Dynamics in Phase Portrait
- Case 1: .
- Case 2: .
- Case 3: .
6.2. Time Series Analysis
6.3. Lyapunov Exponents
6.4. Sensitivity Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hafez, M.; Alshowaikh, F.; Voon, B.W.N.; Alkhazaleh, S.; Al-Faiz, H. Review on recent advances in fractional differentiation and its applications. Progr. Fract. Differ. Appl. 2025, 11, 245–261. [Google Scholar]
- Feng, W.; Zhang, K.; Zhang, J.; Zhao, X.; Chen, Y.; Cai, B.; Zhu, Z.; Wen, H.; Ye, C. Integrating Fractional-Order Hopfield Neural Network with Differentiated Encryption: Achieving High-Performance Privacy Protection for Medical Images. Fractal Fract. 2025, 9, 426. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Feng, W.; Chen, Y.; Zhang, J.; Qin, Z.; Zhu, Z.; Wozniak, M. Exploiting dynamic vector-level operations and a 2D-enhanced logistic modular map for efficient chaotic image encryption. Entropy 2023, 25, 1147. [Google Scholar] [CrossRef]
- Elbadri, M.; AlMutairi, D.M.; Almutairi, D.; Hassan, A.A.; Hdidi, W.; Abdoon, M.A. Efficient numerical techniques for investigating chaotic behavior in the fractional-order inverted Rössler system. Symmetry 2025, 17, 451. [Google Scholar] [CrossRef]
- Abdoon, M.A. Fractional Derivative Approach for Modeling Chaotic Dynamics: Applications in Communication and Engineering Systems. In International Conference on Mathematical Modelling, Applied Analysis and Computation; Springer: Cham, Switzerland, 2025; pp. 82–95. [Google Scholar]
- E. Alsubaie, N.; EL Guma, F.; Boulehmi, K.; Al-kuleab, N.; A. Abdoon, M. Improving influenza epidemiological models under Caputo fractional-order calculus. Symmetry 2024, 16, 929. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y. Fractional Grey System Model and Its Application; Springer: Singapore, 2025. [Google Scholar]
- Zhang, Y.; Sun, H.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Elgezouli, D.E.; Eltayeb, H.; Abdoon, M.A. Novel GPID: Grünwald–Letnikov Fractional PID for Enhanced Adaptive Cruise Control. Fractal Fract. 2024, 8, 751. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Almutairi, D.; AlMutairi, D.M.; Taha, N.E.; Dafaalla, M.E.; Abdoon, M.A. Variable-Fractional-Order Nosé–Hoover System: Chaotic Dynamics and Numerical Simulations. Fractal Fract. 2025, 9, 277. [Google Scholar] [CrossRef]
- Malaikah, H.; Al-Abdali, J.F. Variable-Order Fractional Derivatives in Financial Systems. Appl. Math. 2025, 16, 461–469. [Google Scholar] [CrossRef]
- Naik, P.A.; Naveen, S.; Parthiban, V.; Qureshi, S.; Alquran, M.; Senol, M. Advancing lotka-volterra system simulation with variable fractional order caputo derivative for enhanced dynamic analysis. J. Appl. Anal. Comput. 2025, 15, 1002–1019. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef]
- Cui, W.; Kang, Q.; Li, X.; Zhao, K.; Tay, W.P.; Deng, W.; Li, Y. Neural variable-order fractional differential equation networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 16109–16117. [Google Scholar]
- Jiang, H.; Jiang, P.; Kong, P.; Hu, Y.C.; Lee, C.W. A predictive analysis of China’s CO2 emissions and OFDI with a nonlinear fractional-order grey multivariable model. Sustainability 2020, 12, 4325. [Google Scholar] [CrossRef]
- Hassani, H.; Machado, J.T.; Avazzadeh, Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 2019, 97, 2041–2054. [Google Scholar] [CrossRef]
- Parovik, R.; Tverdyi, D. Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation. Math. Comput. Appl. 2021, 26, 55. [Google Scholar] [CrossRef]
- Bhrawy, A.; Zaky, M. Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 2016, 85, 1815–1823. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Phanikumar, M.S.; Meerschaert, M.M. A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 2013, 66, 693–701. [Google Scholar] [CrossRef]
- Yang-Zheng, L.; Chang-Sheng, J.; Chang-Sheng, L.; Yao-Mei, J. Chaos synchronization between twodifferent 4D hyperchaotic Chen systems. Chin. Phys. 2007, 16, 660. [Google Scholar] [CrossRef]
- Alexan, W.; El-Damak, D.; Gabr, M. Image encryption based on fourier-DNA coding for hyperchaotic chen system, chen-based binary quantization S-box, and variable-base modulo operation. IEEE Access 2024, 12, 21092–21113. [Google Scholar]
- Cafagna, D.; Grassi, G. Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 2008, 18, 1845–1863. [Google Scholar] [CrossRef]
- Čermák, J.; Nechvátal, L. Stability and chaos in the fractional Chen system. Chaos Solitons Fractals 2019, 125, 24–33. [Google Scholar] [CrossRef]
- Lu, J.G.; Chen, G. A note on the fractional-order Chen system. Chaos Solitons Fractals 2006, 27, 685–688. [Google Scholar] [CrossRef]
- Elbadri, M.; Abdoon, M.A.; Almutairi, D.; Almutairi, D.M.; Berir, M. Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods. Fractal Fract. 2024, 8, 709. [Google Scholar] [CrossRef]
- Hussain, S.; Bashir, Z.; Malik, M.A. Chaos analysis of nonlinear variable order fractional hyperchaotic Chen system utilizing radial basis function neural network. Cogn. Neurodyn. 2024, 18, 2831–2855. [Google Scholar] [CrossRef] [PubMed]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974; Volume 111. [Google Scholar]
- Solís-Pérez, J.; Gómez-Aguilar, J.; Atangana, A. Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 2018, 114, 175–185. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z.; Yuan, Z.; Chen, G. A hyperchaos generated from Chen’s system. Int. J. Mod. Phys. C 2006, 17, 471–478. [Google Scholar] [CrossRef]
- Wu, X.; Lu, H.; Shen, S. Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 2009, 373, 2329–2337. [Google Scholar] [CrossRef]
- Mozyrska, D.; Oziablo, P.; Wyrwas, M. Stability of fractional variable order difference systems. Fract. Calc. Appl. Anal. 2019, 22, 807–824. [Google Scholar] [CrossRef]
- Ostalczyk, P. Stability analysis of a discrete-time system with a variable-, fractional-order controller. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 613–619. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Chaudhary, A.; Dubey, R.S.; Sharma, S. Comparative analysis of the chaotic behavior of a five-dimensional fractional hyperchaotic system with constant and variable order. Fractal Fract. 2024, 8, 421. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Abdoon, M.A.; Elbadri, M.; Alzahrani, A.B.; Berir, M.; Ahmed, A. Analyzing the inverted fractional rössler system through two approaches: Numerical scheme and lham. Phys. Scr. 2024, 99, 115220. [Google Scholar] [CrossRef]



















| References | VFDS | LE | CH | HCH | TS | S_ICs | NS |
|---|---|---|---|---|---|---|---|
| [22] | NO | NO | YES | YES | NO | NO | NO |
| [23] | NO | YES | YES | YES | NO | NO | YES |
| [24] | NO | YES | YES | YES | NO | NO | YES |
| [25] | NO | NO | YES | YES | NO | NO | NO |
| [26] | NO | YES | NO | NO | NO | NO | NO |
| [27] | NO | NO | YES | YES | YES | YES | YES |
| [28] | YES | NO | NO | NO | NO | YES | YES |
| This study | YES | YES | YES | YES | YES | YES | YES |
| Time | ||||
|---|---|---|---|---|
| 0.0000 | 0.0000000000 | 0.0000000000 | 8.0000000000 | 6.0000000000 |
| 0.1000 | −5.9229503334 | −8.5445545118 | 3.2665134653 | 5.7823795701 |
| 0.2000 | 1.9666097431 | 9.8088489412 | 18.2323941042 | 3.3977718359 |
| 0.3000 | −1.5280230624 | −5.2735387572 | 12.2011166617 | 5.1916799796 |
| 0.4000 | −10.4157675473 | −6.4770850168 | 18.6933964768 | 3.2025488371 |
| 0.5000 | 10.7201735304 | 13.0759240726 | 10.1143658415 | 3.6330294118 |
| 0.6000 | −0.5339042107 | −3.7835492599 | 11.0321120581 | 5.6997126712 |
| 0.7000 | −13.4392306596 | −9.7419279527 | 20.7620706443 | 3.7756457140 |
| 0.8000 | 11.8720220047 | 13.6151226935 | 12.6248164639 | 4.1582571196 |
| 0.9000 | −0.5853484915 | −2.8723478893 | 9.0870006457 | 5.9407926965 |
| 1.0000 | −16.3891767906 | −13.8945793029 | 21.9301979603 | 4.1243827611 |
| Time | ||||
|---|---|---|---|---|
| 0.0000 | 0.0000000000 | 0.0000000000 | 8.0000000000 | 6.0000000000 |
| 0.1000 | −8.7412074430 | −12.1919837062 | 5.1838327784 | 5.5737162604 |
| 0.2000 | −0.4637054120 | 2.9042801842 | 12.6210694102 | 3.4760008421 |
| 0.3000 | 12.6672222278 | 12.2477763600 | 15.6332212570 | 5.2443935264 |
| 0.4000 | 0.0421656047 | −1.0793058741 | 6.3566358231 | 6.4673173638 |
| 0.5000 | −17.3841932650 | −18.5087916005 | 18.4134619383 | 5.0238092654 |
| 0.6000 | 7.9824006853 | 10.2456498625 | 10.4065317576 | 4.3754169667 |
| 0.7000 | 5.5210328789 | 3.4410642744 | 12.1676379534 | 6.5272506662 |
| 0.8000 | −4.9416005192 | −7.1974332329 | 4.0638180494 | 6.6451371742 |
| 0.9000 | −3.7753741060 | 1.8158746440 | 17.0109265822 | 4.3022490371 |
| 1.0000 | 10.9491858015 | 9.5844174532 | 15.5623139525 | 5.9903677383 |
| Time | ||||
|---|---|---|---|---|
| 0.0000 | 0.0000000000 | 0.0000000000 | 8.0000000000 | 6.0000000000 |
| 0.1000 | −7.5786027003 | −10.7308930588 | 4.2825693505 | 5.6633157230 |
| 0.2000 | 1.0433940605 | 5.7121870807 | 14.3116568492 | 3.4788752157 |
| 0.3000 | 8.8062565651 | 6.6331319848 | 14.8727061059 | 5.4684720195 |
| 0.4000 | −2.3769065946 | −3.7542539568 | 4.4000325880 | 6.0177936282 |
| 0.5000 | −13.2243530075 | −7.1490682112 | 23.1431082759 | 3.8096486979 |
| 0.6000 | 11.6259484236 | 10.0985957103 | 16.8751233246 | 4.9191148985 |
| 0.7000 | −4.1416509079 | −6.1469066305 | 5.9228317605 | 5.6401606171 |
| 0.8000 | −7.8694674908 | −1.5769257184 | 19.7530016059 | 3.3225838096 |
| 0.9000 | 11.7018023189 | 10.1701030103 | 16.6147099437 | 4.7729522666 |
| 1.0000 | −3.5307669854 | −5.3791665531 | 5.8349184635 | 5.5430988274 |
| Cases | LLE1 | LLE2 | LLE3 | LLE4 |
|---|---|---|---|---|
| Case 1 | 1.2534 | 0.27880 | −0.0018 | −21.6758 |
| Case 2 | 1.3668 | 0.1705 | −0.1108 | −17.9331 |
| Case 3 | 1.6242 | 0.0678 | −0.0166 | −15.0978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.I.; Elbadri, M.; Alotaibi, A.M.; Ashmaig, M.A.M.; Dafaalla, M.E.; Kadri, I. Chaos and Dynamic Behavior of the 4D Hyperchaotic Chen System via Variable-Order Fractional Derivatives. Mathematics 2025, 13, 3240. https://doi.org/10.3390/math13203240
Ahmed AI, Elbadri M, Alotaibi AM, Ashmaig MAM, Dafaalla ME, Kadri I. Chaos and Dynamic Behavior of the 4D Hyperchaotic Chen System via Variable-Order Fractional Derivatives. Mathematics. 2025; 13(20):3240. https://doi.org/10.3390/math13203240
Chicago/Turabian StyleAhmed, Athar I., Mohamed Elbadri, Abeer M. Alotaibi, Manahil A. M. Ashmaig, Mohammed E. Dafaalla, and Ilhem Kadri. 2025. "Chaos and Dynamic Behavior of the 4D Hyperchaotic Chen System via Variable-Order Fractional Derivatives" Mathematics 13, no. 20: 3240. https://doi.org/10.3390/math13203240
APA StyleAhmed, A. I., Elbadri, M., Alotaibi, A. M., Ashmaig, M. A. M., Dafaalla, M. E., & Kadri, I. (2025). Chaos and Dynamic Behavior of the 4D Hyperchaotic Chen System via Variable-Order Fractional Derivatives. Mathematics, 13(20), 3240. https://doi.org/10.3390/math13203240

