A New Extended Weibull Distribution: Estimation Methods and Applications in Engineering, Physics, and Medicine
Abstract
1. Introduction
2. The New Exponentiated Weibull Distribution
Special Cases of the NEW Distribution
3. Mathematical Properties
3.1. Quantile Function
3.2. Moments
3.3. Moment-Generating Function
3.4. Rényi Entropy
3.5. Order Statistics
4. Methods of Estimation
4.1. Maximum Likelihood Method
4.2. Least Squares Method
4.3. Cramer–Von Mises Method
4.4. Percentile Method
5. Simulation
6. Application
- The Weibull (W) distribution:
- The exponentiated Weibull (EW) distribution [21]:
- The modified Weibull (MW) distribution [14]:
- The gull alpha-power Weibull (GAPW) distribution [20]:
- The generalized inverse Weibull (GIW) distribution [16]:
- The odd Weibull Weibull (OWW) distribution [18]:
- The KM exponentiated Weibull (KMEW) distribution [34]:
6.1. Dataset Description
6.1.1. Dataset I: Blood Cancer Dataset
6.1.2. Dataset II: Single Carbon Fibers
6.1.3. Dataset III: Aircraft Windshield Dataset
6.1.4. Dataset IV: Aluminum Fracture Toughness Dataset
6.1.5. Dataset V: Reliability Dataset
6.2. Distribution Comparison
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, P.L.; Gupta, R.D. Modeling failure time data by Lehman alternatives. Commun. Stat. Theory Methods 1998, 27, 887–904. [Google Scholar]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat.-Theory Methods 2017, 46, 6543–6557. [Google Scholar]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, D.; Ramos, P.L.; Louzada, F. Exponentiated Chen distribution: Properties and estimation. Commun. Stat.-Simul. Comput. 2017, 46, 8118–8139. [Google Scholar] [CrossRef]
- Ahmed, M.A. On the alpha power Kumaraswamy distribution: Properties, simulation and application. Rev. Colomb. Estad. 2020, 43, 285–313. [Google Scholar]
- Afify, A.Z.; Cordeiro, G.M.; Ibrahim, N.A.; Jamal, F.; Elgarhy, M.; Nasir, M.A. The Marshall-Olkin odd Burr III-G family: Theory, estimation, and engineering applications. IEEE Access 2020, 9, 4376–4387. [Google Scholar]
- Aslam, M.; Afzaal, M.; Bhatti, M.I. A study on exponentiated Gompertz distribution under Bayesian discipline using informative priors. Stat. Transit. New Ser. 2021, 22, 101–119. [Google Scholar] [CrossRef]
- İrhad, M.; Ahammed, E.M.; Maya, R.; Al-omari, A. Marshall-Olkin Bilal distribution with associated minification process and acceptance sampling plans. Hacet. J. Math. Stat. 2024, 53, 201–229. [Google Scholar] [CrossRef]
- Salahuddin, N.; Azeem, M.; Hussain, S.; Ijaz, M. A novel flexible TX family for generating new distributions with applications to lifetime data. Heliyon 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Alomair, A.M.; Ahmed, M.; Tariq, S.; Ahsan-ul Haq, M.; Talib, J. An exponentiated XLindley distribution with properties, inference and applications. Heliyon 2024, 10. [Google Scholar] [CrossRef]
- Namsaw, M.; Das, B.; Hazarika, P.J.; Alizadeh, M. The Alpha Power Modified Weibull-Geometric Distribution: A Comprehensive Mathematical Framework with Simulation, Goodness-of-fit Analysis and Informed Decision making using Real Life Data. Stat. Optim. Inf. Comput. 2025, 14, 1060–1087. [Google Scholar]
- Aliabadi, M.; Ghatari, A.H.; Khorram, E. A Three-Parameter Alpha Power Erlang Distribution for Modeling Lifetime Data. Stat. Optim. Inf. Comput. 2025. [Google Scholar]
- Lai, C.; Xie, M.; Murthy, D. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Ortega, E.M.; Nadarajah, S. The Kumaraswamy Weibull distribution with application to failure data. J. Frankl. Inst. 2010, 347, 1399–1429. [Google Scholar] [CrossRef]
- De Gusmao, F.R.; Ortega, E.M.; Cordeiro, G.M. The generalized inverse Weibull distribution. Stat. Pap. 2011, 52, 591–619. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Ortega, E.M.; Lemonte, A.J. The exponential–Weibull lifetime distribution. J. Stat. Comput. Simul. 2014, 84, 2592–2606. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Tahir, M.H.; Cordeiro, G.M.; Alizadeh, M.; Mansoor, M.; Zubair, M.; Hamedani, G.G. The odd generalized exponential family of distributions with applications. J. Stat. Distrib. Appl. 2015, 2, 1. [Google Scholar] [CrossRef]
- Ijaz, M.; Asim, S.M.; Alamgir; Farooq, M.; Khan, S.A.; Manzoor, S. A Gull Alpha Power Weibull distribution with applications to real and simulated data. PLoS ONE 2020, 15, e0233080. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Pinho, L.; Cordeiro, G.; Nobre, J. The gamma-exponentiated Weibull distribution. J. Stat. Theory Appl. 2012, 11, 379–395. [Google Scholar]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat.-Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Mansour, M.; Korkmaz, M.Ç.; Ali, M.M.; Yousof, H.; Ansari, S.I.; Ibrahim, M. A generalization of the exponentiated Weibull model with properties, Copula and application. Eurasian Bull. Math. 2020, 3, 84–102. [Google Scholar]
- Ashraf, J.H.; Iqbal, Z.; Chakrabarty, T.K. A New Generalized Exponentiated Weibull Distribution: Properties and Applications. Thail. Stat. 2024, 22, 856–876. [Google Scholar]
- Kumar, D.; Singh, U.; Singh, S.K. A new distribution using sine function-its application to bladder cancer patients data. J. Stat. Appl. Probab. 2015, 4, 417. [Google Scholar]
- Kumar, D.; Singh, U.; Singh, S.K. A method of proposing new distribution and its application to Bladder cancer patients data. J. Stat. Appl. Pro. Lett. 2015, 2, 235–245. [Google Scholar]
- Maurya, S.K.; Kaushik, A.; Singh, R.K.; Singh, S.K.; Singh, U. A new method of proposing distribution and its application to real data. Imp. J. Interdiscip. Res. 2016, 2, 1331–1338. [Google Scholar]
- Kumar, D.; Singh, U.; Singh, U. Life time distributions: Derived from some minimum guarantee distribution. Sohag J. Math. 2017, 4, 7–11. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, P.; Kumar, P.; Singh, S.K.; Singh, U. PCM transformation: Properties and their estimation. J. Reliab. Stat. Stud. 2021, 14, 373–392. [Google Scholar] [CrossRef]
- Kavya, P.; Manoharan, M. Some parsimonious models for lifetimes and applications. J. Stat. Comput. Simul. 2021, 91, 3693–3708. [Google Scholar] [CrossRef]
- Dar, I.; Lone, M. A new class of probability distributions with an application in engineering science. Pak. J. Stat. Oper. Res. 2024, 20, 217–231. [Google Scholar] [CrossRef]
- Gauthami, P.; Chacko, V. Dus transformation of inverse Weibull distribution: An upside-down failure rate model. Reliab. Theory Appl. 2021, 16, 58–71. [Google Scholar]
- Alotaibi, N.; Elbatal, I.; Almetwally, E.M.; Alyami, S.A.; Al-Moisheer, A.; Elgarhy, M. Bivariate step-stress accelerated life tests for the Kavya–Manoharan exponentiated Weibull model under progressive censoring with applications. Symmetry 2022, 14, 1791. [Google Scholar] [CrossRef]
- Alotaibi, N.; Elbatal, I.; Shrahili, M.; Al-Moisheer, A.; Elgarhy, M.; Almetwally, E.M. Statistical inference for the Kavya–Manoharan Kumaraswamy model under ranked set sampling with applications. Symmetry 2023, 15, 587. [Google Scholar] [CrossRef]
- Afify, A.Z.; Abdelall, Y.Y.; AlQadi, H.; Mahran, H.A. The Modified Log-Logistic Distribution: Properties and Inference with Real-Life Data Applications. Contemp. Math. 2025, 790, 862–902. [Google Scholar] [CrossRef]
- West, R.M. Best practice in statistics: The use of log transformation. Ann. Clin. Biochem. 2022, 59, 162–165. [Google Scholar] [CrossRef]
- Curran-Everett, D. Explorations in statistics: The log transformation. Adv. Physiol. Educ. 2018, 42, 343–347. [Google Scholar] [CrossRef]
- Swain, J.J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution functions in Johnson’s translation system. J. Stat. Comput. Simulation 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Macdonald, P. Comments and Queries Comment on “An Estimation Procedure for Mixtures of Distributions” by Choi and Bulgren. J. R. Stat. Soc. Ser. B Stat. Methodol. 1971, 33, 326–329. [Google Scholar] [CrossRef]
- Kao, J.H. Computer methods for estimating Weibull parameters in reliability studies. IRE Trans. Reliab. Qual. Control 2009, PGRQC-13, 15–22. [Google Scholar] [CrossRef]
- Atallah, M.; Mahmoud, M.; Al-Zahrani, B. A new test for exponentiality versus NBUmgf life distributions based on Laplace transform. Qual. Reliab. Eng. Int. 2014, 30, 1353–1359. [Google Scholar] [CrossRef]
- Al-Saiary, Z.A.; Bakoban, R.A. The Topp-Leone generalized inverted exponential distribution with real data applications. Entropy 2020, 22, 1144. [Google Scholar] [CrossRef]
- Klakattawi, H.S. Survival analysis of cancer patients using a new extended Weibull distribution. PLoS ONE 2022, 17, e0264229. [Google Scholar] [CrossRef]
- Alrashidi, A. Arctan Kavya-Manoharan-G class of distributions with modelling in different fields. Adv. Appl. Stat. 2024, 91, 393–420. [Google Scholar] [CrossRef]
- Tahir, M.H.; Cordeiro, G.M.; Mansoor, M.; Zubair, M. The Weibull-Lomax distribution: Properties and applications. Hacet. J. Math. Stat. 2015, 44, 455–474. [Google Scholar] [CrossRef]
- Alshanbari, H.M.; Ahmad, Z.; El-Bagoury, A.A.A.H.; Odhah, O.H.; Rao, G.S. A new modification of the Weibull distribution: Model, theory, and analyzing engineering data sets. Symmetry 2024, 16, 611. [Google Scholar] [CrossRef]
- Meeker, W.; Escobar, L. Statistical Methods for Reliability Data; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Klakattawi, H.S.; Aljuhani, W.H.; Baharith, L.A. Alpha power exponentiated new Weibull-Pareto distribution: Its properties and applications. Pak. J. Stat. Oper. Res. 2022, 18, 703–720. [Google Scholar] [CrossRef]
ML | LS | CVM | PE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Parameter | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE |
21.6842 | 19.9842 | 24,196.8073 | 11.2838 | 9.5838 | 776.9405 | 12.2995 | 10.5995 | 940.8378 | 10.2026 | 8.5026 | 1641.7255 | ||
n = 30 | 4.5681 | 1.6681 | 32.5739 | 4.6948 | 1.7948 | 35.5991 | 4.9269 | 2.0269 | 42.1780 | 3.7051 | 0.8051 | 11.3993 | |
3.9237 | 1.6237 | 90.2580 | 4.0191 | 1.7191 | 24.3403 | 3.9661 | 1.6661 | 20.7270 | 3.5755 | 1.2755 | 23.4206 | ||
2.1361 | 0.4361 | 4.6354 | 3.3866 | 1.6866 | 51.4324 | 3.4553 | 1.7553 | 53.4732 | 2.1784 | 0.4784 | 8.1855 | ||
n = 100 | 3.1230 | 0.2230 | 1.0794 | 3.2423 | 0.3423 | 2.8096 | 3.2686 | 0.3686 | 2.9283 | 3.0362 | 0.1362 | 0.9626 | |
2.4057 | 0.1057 | 0.3051 | 2.6682 | 0.3682 | 1.9271 | 2.6746 | 0.3746 | 1.8977 | 2.4223 | 0.1223 | 0.3914 | ||
1.8736 | 0.1736 | 0.7476 | 2.3286 | 0.6286 | 7.6210 | 2.3475 | 0.6475 | 7.5905 | 1.8789 | 0.1789 | 0.7918 | ||
n = 200 | 2.9856 | 0.0856 | 0.3668 | 3.0229 | 0.1229 | 0.9380 | 3.0338 | 0.1338 | 0.9493 | 2.9367 | 0.0367 | 0.3651 | |
2.3470 | 0.0470 | 0.0910 | 2.4631 | 0.1631 | 0.4845 | 2.4669 | 0.1669 | 0.4788 | 2.3524 | 0.0524 | 0.1005 | ||
1.7965 | 0.0965 | 0.3625 | 2.0297 | 0.3297 | 2.1313 | 2.0413 | 0.3413 | 2.1608 | 1.8003 | 0.1003 | 0.3853 | ||
n = 300 | 2.9617 | 0.0617 | 0.2350 | 2.9835 | 0.0835 | 0.5860 | 2.9904 | 0.0904 | 0.5903 | 2.9262 | 0.0262 | 0.2365 | |
2.3270 | 0.0270 | 0.0508 | 2.3932 | 0.0932 | 0.1935 | 2.3961 | 0.0961 | 0.1937 | 2.3305 | 0.0305 | 0.0550 | ||
1.7553 | 0.0553 | 0.1898 | 1.8548 | 0.1548 | 0.5989 | 1.8611 | 0.1611 | 0.6069 | 1.7587 | 0.0587 | 0.1990 | ||
n = 500 | 2.9368 | 0.0368 | 0.1328 | 2.9539 | 0.0539 | 0.3211 | 2.9579 | 0.0579 | 0.3225 | 2.9125 | 0.0125 | 0.1356 | |
2.3161 | 0.0161 | 0.0284 | 2.3462 | 0.0462 | 0.0768 | 2.3480 | 0.0480 | 0.0770 | 2.3186 | 0.0186 | 0.0302 |
ML | LS | CVM | PE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Parameter | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE |
9.4673 | 7.7673 | 3272.9569 | 5.8017 | 4.1017 | 128.0415 | 6.4569 | 4.7569 | 177.5209 | 5.4268 | 3.7268 | 153.6565 | ||
n = 30 | 1.7316 | 0.6316 | 4.6288 | 1.7922 | 0.6922 | 5.0605 | 1.87900 | 0.7790 | 5.9945 | 1.3984 | 0.2984 | 1.6614 | |
2.9256 | 2.6256 | 278.7868 | 1.3481 | 1.0481 | 8.3484 | 1.3494 | 1.0494 | 8.4257 | 1.4719 | 1.1719 | 19.2303 | ||
2.1354 | 0.4354 | 4.5938 | 2.8531 | 1.1531 | 13.7024 | 2.9255 | 1.2255 | 15.1697 | 2.2514 | 0.5514 | 4.9204 | ||
n = 100 | 1.1846 | 0.0846 | 0.1551 | 1.2323 | 0.1323 | 0.4025 | 1.2417 | 0.1417 | 0.4137 | 1.1369 | 0.0369 | 0.1374 | |
0.3804 | 0.0804 | 0.2278 | 0.5381 | 0.2381 | 0.6314 | 0.5452 | 0.2452 | 0.6818 | 0.4079 | 0.1079 | 0.2178 | ||
1.8735 | 0.1735 | 0.7475 | 2.2564 | 0.5564 | 4.3515 | 2.2737 | 0.5737 | 4.3355 | 1.9418 | 0.2418 | 0.92912 | ||
n = 200 | 1.1325 | 0.0325 | 0.0528 | 1.1471 | 0.0471 | 0.1344 | 1.1512 | 0.0512 | 0.1359 | 1.1026 | 0.0026 | 0.0531 | |
0.3279 | 0.0279 | 0.0173 | 0.4039 | 0.1039 | 0.1661 | 0.4044 | 0.1044 | 0.1556 | 0.3400 | 0.0400 | 0.0235 | ||
1.7963 | 0.0964 | 0.3624 | 2.0204 | 0.3204 | 1.7382 | 2.0331 | 0.3331 | 1.8022 | 1.8475 | 0.1475 | 0.4452 | ||
n = 300 | 1.1234 | 0.0234 | 0.0338 | 1.1318 | 0.0318 | 0.0842 | 1.1343 | 0.0343 | 0.0849 | 1.1007 | 0.0007 | 0.0348 | |
0.3156 | 0.0156 | 0.0076 | 0.3558 | 0.0558 | 0.0497 | 0.3571 | 0.0571 | 0.05167 | 0.3239 | 0.0239 | 0.0099 | ||
1.7553 | 0.0553 | 0.1898 | 1.8548 | 0.1548 | 0.5988 | 1.8609 | 0.1609 | 0.6047 | 1.7915 | 0.0915 | 0.2261 | ||
n = 500 | 1.1139 | 0.0139 | 0.0191 | 1.1204 | 0.0204 | 0.0462 | 1.1219 | 0.0219 | 0.0464 | 1.0978 | −0.0022 | 0.0201 | |
0.3091 | 0.0091 | 0.0039 | 0.3257 | 0.0257 | 0.0135 | 0.3263 | 0.0263 | 0.0134 | 0.3146 | 0.0146 | 0.0047 |
ML | LS | CVM | PE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Parameter | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE | Estimate | Bias | MSE |
16.0887 | 14.5887 | 12,013.8878 | 9.8742 | 8.3742 | 642.3965 | 10.7201 | 9.2201 | 778.0744 | 8.7871 | 7.2871 | 1289.0428 | ||
n = 30 | 4.4568 | 1.6568 | 29.2649 | 4.5318 | 1.7318 | 32.1369 | 4.7609 | 1.9609 | 38.2404 | 3.5382 | 0.7382 | 10.3504 | |
9.8292 | 4.2292 | 687.7262 | 10.4537 | 4.8537 | 222.1804 | 10.3303 | 4.7303 | 196.5355 | 9.3227 | 3.7227 | 258.3909 | ||
1.8323 | 0.3323 | 2.6321 | 2.8135 | 1.3135 | 35.1296 | 2.8535 | 1.3535 | 31.0659 | 1.9478 | 0.4478 | 6.3721 | ||
n = 100 | 3.0277 | 0.2277 | 1.0791 | 3.1404 | 0.3404 | 2.6873 | 3.1649 | 0.3649 | 2.8055 | 2.8926 | 0.0926 | 0.8644 | |
5.8509 | 0.2509 | 1.7772 | 6.5093 | 0.9093 | 13.3048 | 6.5221 | 0.9221 | 11.9380 | 5.9611 | 0.3611 | 2.7939 | ||
1.6363 | 0.1363 | 0.5082 | 1.9857 | 0.4857 | 4.7559 | 2.006 | 0.5056 | 4.8449 | 1.6799 | 0.1799 | 0.5961 | ||
n = 200 | 2.8870 | 0.0870 | 0.3450 | 2.9224 | 0.1224 | 0.8761 | 2.9323 | 0.1323 | 0.8869 | 2.8079 | 0.0079 | 0.3302 | |
5.7118 | 0.1118 | 0.5469 | 5.9888 | 0.3888 | 2.8507 | 6.0024 | 0.4024 | 2.8755 | 5.7635 | 0.1635 | 0.6512 | ||
1.5758 | 0.0758 | 0.2546 | 1.7579 | 0.2579 | 1.3150 | 1.7682 | 0.2682 | 1.3339 | 1.6088 | 0.1088 | 0.2939 | ||
n = 300 | 2.8622 | 0.0622 | 0.2202 | 2.8829 | 0.0829 | 0.5450 | 2.8891 | 0.0891 | 0.5490 | 2.8023 | 0.0023 | 0.2156 | |
5.6643 | 0.0643 | 0.3071 | 5.8224 | 0.2224 | 1.1262 | 5.8309 | 0.2309 | 1.1292 | 5.7032 | 0.1032 | 0.3537 | ||
1.5436 | 0.0436 | 0.1349 | 1.6228 | 0.1228 | 0.4085 | 1.6284 | 0.1284 | 0.4135 | 1.5682 | 0.0682 | 0.1506 | ||
n = 500 | 2.8368 | 0.0368 | 0.1236 | 2.8531 | 0.0531 | 0.2975 | 2.8568 | 0.0568 | 0.2988 | 2.7939 | −0.0061 | 0.1238 | |
5.6385 | 0.0385 | 0.1718 | 5.7107 | 0.1107 | 0.4537 | 5.7158 | 0.1158 | 0.4554 | 5.6674 | 0.0674 | 0.1914 |
Min | Mean | Max | SD | |||
---|---|---|---|---|---|---|
Value | 0.315 | 2.199 | 3.141 | 4.264 | 5.381 | 1.358 |
Min | Mean | Max | SD | |||
---|---|---|---|---|---|---|
Value | 1.312 | 2.478 | 2.455 | 2.773 | 3.858 | 0.505 |
Min | Mean | Max | SD | |||
---|---|---|---|---|---|---|
Value | 0.046 | 1.122 | 2.085 | 2.820 | 5.14 | 1.245 |
Min | Mean | Max | SD | |||
---|---|---|---|---|---|---|
Value | 2.157 | 5.070 | 5.858 | 6.675 | 10.654 | 1.635 |
Min | Mean | Max | SD | |||
---|---|---|---|---|---|---|
Value | 0.0200 | 0.6875 | 1.7703 | 2.9825 | 3.0000 | 1.1499 |
Model | NEW | W | EW | MW | GAPW | GIW | OWW | KMEW |
---|---|---|---|---|---|---|---|---|
(0.5026) | (0.3370) | (0.1420) | (0.3029) | (0.3408) | (6.5362) | (0.0020) | (0.0045) | |
(0.6004) | (0.0187) | (1.5843) | (1.0089) | (0.4312) | (0.0940) | (0.3342) | (0.0055) | |
– | ||||||||
(0.0106) | – | (0.0178) | (0.0140) | (0.0714) | (0.7615) | (8.6834) | (0.0216) | |
Information Criteria and Fit Statistics | ||||||||
AIC | 137.1651 | 143.1159 | 138.9426 | 143.2146 | 143.6468 | 164.4864 | 143.8760 | 137.3035 |
BIC | 142.2317 | 146.4937 | 144.0092 | 148.2813 | 148.7134 | 169.5530 | 148.9427 | 142.3702 |
HQIC | 138.9970 | 144.3372 | 140.7745 | 145.0466 | 145.4787 | 166.3183 | 145.7080 | 139.1355 |
AICc | 137.8317 | 143.4403 | 139.6093 | 143.8813 | 144.3135 | 165.1530 | 144.5427 | 137.9702 |
CAIC | 142.2317 | 146.4937 | 144.0092 | 148.2813 | 148.7134 | 169.5530 | 148.9427 | 142.3702 |
KS | 0.0526 | 0.1183 | 0.1080 | 0.1042 | 0.0958 | 0.1798 | 0.1175 | 0.1080 |
p-value | 0.9998 | 0.6298 | 0.7391 | 0.7769 | 0.8555 | 0.1501 | 0.6380 | 0.7382 |
Model | NEW | W | EW | MW | GAPW | GIW | OWW | KMEW |
---|---|---|---|---|---|---|---|---|
(10.7520) | (0.4688) | (29.2769) | (0.7221) | (0.5257) | (11.2416) | (0.0001) | (0.2405) | |
(0.2538) | (0.0091) | (0.2304) | (1.9075) | (0.2574) | (0.4163) | (0.2149) | (1.5662) | |
– | ||||||||
(0.3670) | – | (0.4072) | (0.0023) | (0.0002) | (2.5918) | (1.5457) | (7.6128) | |
Information Criteria and Fit Statistics | ||||||||
AIC | 106.5551 | 107.4331 | 113.3200 | 119.5249 | 107.5790 | 110.5007 | 113.2115 | 110.5007 |
BIC | 113.2574 | 111.9013 | 120.0223 | 126.2273 | 114.2813 | 117.2030 | 119.9138 | 117.2030 |
HQIC | 109.2141 | 109.2058 | 115.9790 | 122.1840 | 110.2380 | 113.1597 | 115.8705 | 113.1597 |
AICc | 106.9243 | 107.6149 | 113.6892 | 119.8942 | 107.9482 | 110.8699 | 113.5807 | 110.8699 |
CAIC | 113.2574 | 111.9013 | 120.0223 | 126.2273 | 114.2813 | 117.2030 | 119.9138 | 117.2030 |
KS | 0.0445 | 0.0664 | 0.0772 | 0.0951 | 0.0562 | 0.0569 | 0.0921 | 0.0569 |
p-value | 0.9992 | 0.9209 | 0.8060 | 0.5606 | 0.9812 | 0.9788 | 0.6011 | 0.9787 |
Model | NEW | W | EW | MW | GAPW | GIW | OWW | KMEW |
---|---|---|---|---|---|---|---|---|
(2.6480) | (0.1683) | (0.1802) | (0.1615) | (0.3252) | (48.3211) | (0.5236) | (0.0319) | |
(0.1298) | (0.0350) | (1.1407) | (0.4095) | (0.2532) | (0.0393) | (0.4131) | (1.9824) | |
– | ||||||||
(1.0550) | – | (0.0454) | (0.0546) | (0.2091) | (0.6801) | (0.8457) | (0.1623) | |
Information Criteria and Fit Statistics | ||||||||
AIC | 202.1731 | 204.6354 | 202.6543 | 207.0139 | 205.0444 | 222.2806 | 202.5313 | 203.1560 |
BIC | 208.6025 | 208.9217 | 209.0837 | 213.4433 | 211.4738 | 228.7100 | 208.9607 | 209.5854 |
HQIC | 204.7018 | 206.3212 | 205.1830 | 209.5427 | 207.5731 | 224.8093 | 205.0600 | 205.6847 |
AICc | 202.5799 | 204.8354 | 203.0611 | 207.4207 | 205.4512 | 222.6874 | 202.9381 | 203.5628 |
CAIC | 208.6025 | 208.9217 | 209.0837 | 213.4433 | 211.4738 | 228.7100 | 208.9607 | 209.5854 |
KS | 0.0672 | 0.1087 | 0.0760 | 0.0787 | 0.0921 | 0.1626 | 0.0694 | 0.0842 |
p-value | 0.9203 | 0.4164 | 0.8324 | 0.8008 | 0.6263 | 0.0635 | 0.9004 | 0.7307 |
Model | NEW | W | EW | MW | GAPW | GIW | OWW | KMEW |
---|---|---|---|---|---|---|---|---|
(18.0119) | (0.2446) | (6.1549) | (0.0942) | (0.1767) | (37.1112) | (0.1521) | (0.1224) | |
(0.0404) | (0.0038) | (1.0652) | (0.4971) | (0.0675) | (0.1428) | (0.0750) | (1.3359) | |
– | ||||||||
(3.5645) | – | (0.1365) | (0.0029) | (0.0003) | (2.6427) | (0.0091) | (5.8167) | |
Information Criteria and Fit Statistics | ||||||||
AIC | 499.9850 | 503.7075 | 501.2128 | 522.2212 | 505.7049 | 502.3039 | 532.3287 | 501.8669 |
BIC | 508.5876 | 509.4425 | 509.8154 | 530.8238 | 514.3075 | 510.9065 | 540.9313 | 510.4695 |
HQIC | 503.4806 | 506.0378 | 504.7083 | 525.7167 | 509.2004 | 505.7995 | 535.8242 | 505.3624 |
AICc | 500.1755 | 503.8019 | 501.4033 | 522.4116 | 505.8953 | 502.4944 | 532.5192 | 502.0574 |
CAIC | 508.5876 | 509.4425 | 509.8154 | 530.8238 | 514.3075 | 510.9065 | 540.9313 | 510.4695 |
KS | 0.0714 | 0.0964 | 0.0939 | 0.1207 | 0.0908 | 0.1014 | 0.1356 | 0.0937 |
p-value | 0.5206 | 0.1785 | 0.2017 | 0.0452 | 0.2343 | 0.1381 | 0.0167 | 0.2032 |
Model | NEW | W | EW | MW | GAPW | GIW | OWW | KMEW |
---|---|---|---|---|---|---|---|---|
(0.0185) | (0.2044) | (0.0240) | (0.2111) | (0.3685) | (49.2265) | (0.7016) | (0.0025) | |
(0.0025) | (0.0797) | (0.0040) | (0.2199) | ( 0.2397) | (0.0447) | (0.2543) | (0.0026) | |
– | ||||||||
( 0.0023) | – | (0.0039) | (0.0714) | (0.2455) | (0.9407) | (0.1554) | (0.0248) | |
Information Criteria and Fit Statistics | ||||||||
AIC | 73.5482 | 96.3174 | 83.4906 | 85.8168 | 97.2778 | 107.8242 | 88.0998 | 87.0004 |
BIC | 77.7518 | 99.1198 | 87.6942 | 90.0204 | 101.4814 | 112.0278 | 92.3034 | 91.2040 |
HQIC | 74.8930 | 97.2139 | 84.8354 | 87.1616 | 98.6226 | 109.1690 | 89.4445 | 88.3451 |
AICc | 74.4713 | 96.7619 | 84.4137 | 86.7399 | 98.2009 | 108.7473 | 89.0228 | 87.9234 |
CAIC | 77.7518 | 99.1198 | 87.6942 | 90.0204 | 101.4814 | 112.0278 | 92.3034 | 91.2040 |
KS | 0.1556 | 0.2193 | 0.2380 | 0.1803 | 0.2084 | 0.2099 | 0.1919 | 0.2615 |
p-value | 0.4616 | 0.1113 | 0.0668 | 0.2830 | 0.1475 | 0.1418 | 0.2190 | 0.0329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsulami, D.; Alghamdi, A.S. A New Extended Weibull Distribution: Estimation Methods and Applications in Engineering, Physics, and Medicine. Mathematics 2025, 13, 3262. https://doi.org/10.3390/math13203262
Alsulami D, Alghamdi AS. A New Extended Weibull Distribution: Estimation Methods and Applications in Engineering, Physics, and Medicine. Mathematics. 2025; 13(20):3262. https://doi.org/10.3390/math13203262
Chicago/Turabian StyleAlsulami, Dawlah, and Amani S. Alghamdi. 2025. "A New Extended Weibull Distribution: Estimation Methods and Applications in Engineering, Physics, and Medicine" Mathematics 13, no. 20: 3262. https://doi.org/10.3390/math13203262
APA StyleAlsulami, D., & Alghamdi, A. S. (2025). A New Extended Weibull Distribution: Estimation Methods and Applications in Engineering, Physics, and Medicine. Mathematics, 13(20), 3262. https://doi.org/10.3390/math13203262