Ribbonness of a Stable-Ribbon Surface-Link, II: General Case
Abstract
:1. Introduction
- (1)
- F is a ribbon surface-link.
- (2)
- The surface-knot obtained from F by every fusion is a ribbon surface-knot.
- (3)
- The surface-knot obtained from F by a fusion is a ribbon surface-knot.
2. Proof of Lemma 1
3. Proof of Lemma 2
- (i)
- There is an O2-handle pair on attached to such that the surface-link is a ribbon surface-link with trivial 1-handles attached.
- (ii)
- There is an O2-handle pair on attached to such that the surface-link is F with trivial 1-handles attached.
4. Proofs of Theorems 2 and 3
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawauchi, A. Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link. Topol. Its Appl. 2021, 301, 107522. [Google Scholar] [CrossRef]
- Kawauchi, A. Uniqueness of an orthogonal 2-handle pair on a surface-link. Contemp. Math. 2023, 4, 182–188. [Google Scholar] [CrossRef]
- Hosokawa, F.; Kawauchi, A. Proposals for unknotted surfaces in four-space. Osaka J. Math. 1979, 16, 233–248. [Google Scholar]
- Kawauchi, A.; Tetsuo, S.; Shinichi, S. Descriptions on surfaces in four-space, II: Singularities and cross-sectional links. Math. Sem. Notes Kobe Univ. 1983, 11, 31–69. [Google Scholar]
- Yajima, T. On the fundamental groups of knotted 2-manifolds in the 4-space. J. Math. Osaka City Univ. 1962, 13, 63–71. [Google Scholar]
- Yajima, T. On simply knotted spheres in R4. Osaka J. Math. 1964, 1, 133–152. [Google Scholar]
- Yanagawa, T. On ribbon 2-knots; the 3-manifold bounded by the 2-knot. Osaka J. Math. 1969, 6, 447–464. [Google Scholar]
- Kauffman, L.H. Virtual knot theory. Eur. Comb. 1999, 20, 663–691. [Google Scholar] [CrossRef]
- Kawauchi, A. A chord diagram of a ribbon surface-link. J. Knot Theory Ramif. 2015, 24, 1540002. [Google Scholar] [CrossRef]
- Satoh, S. Virtual knot presentation of ribbon torus-knots. J. Knot Theory Ramif. 2000, 9, 531–542. [Google Scholar] [CrossRef]
- Turaev, V. Knotoids. Osaka J. Math. 2012, 49, 195–223. [Google Scholar]
- Bing, R.H. Necessary and sufficient conditions that a 3-manifold be S3. Ann. Math. 1958, 68, 17–37. [Google Scholar] [CrossRef]
- Perelman, G. Ricci flow with surgery on three-manifolds. arXiv 2003, arXiv:math/0303109. [Google Scholar]
- Poincaré, H. Second complément à l’Analysis Sitis. Proc. London Math. Soc. 1900, 32, 277–308. [Google Scholar] [CrossRef]
- Poincaré, H. Cinquième complément à l’Analysis Sitis. Rend. Circ. Mat. Palermo 1904, 18, 45–110. [Google Scholar] [CrossRef]
- Fox, R.H. A Quick Trip Through Knot Theory, Topology of 3-Manifolds and Related Topics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962; pp. 120–167. [Google Scholar]
- Fox, R.H. Characterization of slices and ribbons. Osaka J. Math. 1973, 10, 69–76. [Google Scholar]
- Fox, R.H.; Milnor, J.W. Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math. 1966, 3, 257–267. [Google Scholar]
- Kawauchi, A.; Tetsuo, S.; Shinichi, S. Descriptions on surfaces in four-space, I: Normal forms. Math. Sem. Notes Kobe Univ. 1982, 10, 75–125. [Google Scholar]
- Ogasa, E. Nonribbon 2-links all of whose components are trivial knots and some of whose band-sums are nonribbon knots. J. Knot Theory Ramif. 2001, 10, 913–922. [Google Scholar] [CrossRef]
- Rolfsen, D. Knots and Links; Publish or Perish: Berkeley, CA, USA, 1976. [Google Scholar]
- Hirose, S. On diffeomorphisms over surfaces trivially embedded in the 4-sphere. Algebr. Geom. Topol. 2002, 2, 791–824. [Google Scholar] [CrossRef]
- Kawauchi, A. Faithful equivalence of equivalent ribbon surface-links. J. Knot Theory Ramif. 2018, 27, 1843003. [Google Scholar] [CrossRef]
- Hillman, J.A.; Kawauchi, A. Unknotting orientable surfaces in the 4-sphere. J. Knot Theory Ramif. 1995, 4, 213–224. [Google Scholar] [CrossRef]
- Howie, J. Some remarks on a problem of J. H. C. Whitehead. Topology 1983, 22, 475–485. [Google Scholar] [CrossRef]
- Kervaire, M.A. On higher dimensional knots. In Differential and Combinatorial Topology; Princeton University Press: Princeton, NJ, USA, 1965; Volume 27, pp. 105–119. [Google Scholar]
- Magnus, W.; Karrass, A.; Solitar, D. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations; Interscience Publishers: Geneva, Switzerland, 1966. [Google Scholar]
- Whitehead, J.H.C. On adding relations to homotopy groups. Ann. Math. 1941, 42, 409–428. [Google Scholar] [CrossRef]
- González Acuña, F.; Ramírez, A. A knot-theoretic equivalent of the Kervaire conjecture. J. Knot Theory Ramif. 2006, 15, 471–478. [Google Scholar] [CrossRef]
- Klyachko, A.A. A funny property of a sphere and equations over groups. Comm. Algebra 1993, 21, 2555–2575. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawauchi, A. Ribbonness of a Stable-Ribbon Surface-Link, II: General Case. Mathematics 2025, 13, 402. https://doi.org/10.3390/math13030402
Kawauchi A. Ribbonness of a Stable-Ribbon Surface-Link, II: General Case. Mathematics. 2025; 13(3):402. https://doi.org/10.3390/math13030402
Chicago/Turabian StyleKawauchi, Akio. 2025. "Ribbonness of a Stable-Ribbon Surface-Link, II: General Case" Mathematics 13, no. 3: 402. https://doi.org/10.3390/math13030402
APA StyleKawauchi, A. (2025). Ribbonness of a Stable-Ribbon Surface-Link, II: General Case. Mathematics, 13(3), 402. https://doi.org/10.3390/math13030402