Next Article in Journal
A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data
Previous Article in Journal
Complex-Valued Multivariate Neural Network (MNN) Approximation by Parameterized Half-Hyperbolic Tangent Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Maxima of the Aα-Index of Non-Bipartite C3-Free Graphs for 1/2 < α < 1

Department of Mathematics, Taiyuan University of Science and Technology, Taiyuan 030024, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(3), 454; https://doi.org/10.3390/math13030454
Submission received: 18 December 2024 / Revised: 22 January 2025 / Accepted: 27 January 2025 / Published: 29 January 2025

Abstract

:
In 2017, Nikiforov defined the A α -matrix of the graph G as A α ( G ) = α D ( G ) + ( 1 α ) A ( G ) , 0 α 1 , which merges the diagonal degree matrix D ( G ) and the adjacency matrix A ( G ) . In this paper, we characterize the graphs which attain the maximum A α -index among triangle-free non-bipartite graphs of order n for 1 / 2 < α < 1 .

1. Introduction

Let A ( G ) be the adjacency matrix and D ( G ) be the diagonal degree matrix of a graph G. The matrix A α ( G ) is defined in [1]
as
A α ( G ) = α D ( G ) + ( 1 α ) A ( G ) , 0 α 1 .
Obviously,
A ( G ) = A 0 ( G ) , Q ( G ) = 2 A 1 / 2 ( G ) ,
where Q ( G ) is the signless Laplacian matrix. Hence, the study of the family A α ( G ) provides a new light for seeing the matrices A ( G ) and Q ( G ) .
The largest eigenvalue of A α ( G ) , denoted by λ 1 ( A α ( G ) ) , is called the A α spectral radius or the A α - i n d e x of G. For 0 α < 1 , we know that A α ( G ) is non-negative. From the Perron–Frobenius theorem, λ 1 ( A α ( G ) ) has a positive unit eigenvector for every connected graph G, which is called the P e r r o n v e c t o r of A α ( G ) . Obviously, the A α -index does not change when G has isolated vertices. Therefore, in this paper, we only consider graphs without isolated vertices.
Let G be a graph with the vertex set V ( G ) and the edge set E ( G ) . Let n = | V ( G ) | and m = | E ( G ) | be the order and the size of G, respectively. If H is not a subgraph of G, the graph G is called H- f r e e . The Turán-type extremal problem is posed as follows (see [2]): what is the maximum size m of an H-free graph with the order n?
A spectral version of the Turán-type problem as shown in Problem 1 was formally posed by Nikiforov.
Problem 1
([3]). What is the maximum spectral radius of an H-free graph of order n or size m?
On the other hand, Freitas et al. [4] proposed a Q-spectral version of the Turán-type problem.
Problem 2
([4]). What is the maximum Q-index among all the H-free graphs with given order n or size m?
In the past two decades, much attention has been paid to Problems 1 and 2 for some specific graph H, such as the cycle C 4 [5], the cycle C 6 [6], even cycles [7], odd cycles [8], and K r + 1 [9,10]; other results are shown in related references ([11,12,13,14,15,16]).
Let H be a graph with the vertex set V ( H ) = { v 1 , v 2 , , v k } and r = ( n 1 , n 2 , , n k ) , n i 1 , i = 1 , , k . Replacing each vertex v i of H with a graph n i K 1 (an independent set with n i vertices) and joining every vertex between n i K 1 and n j K 1 for v i v j E ( H ) , we obtain a new graph H r , which is called a blow-up of H ([13]). For example, when H C 5 with the vertex set V ( C 5 ) = { v 1 , v 2 , v 3 , v 4 , , v 5 } and r = ( n 4 , 1 , 1 , 1 , 1 ) , the graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) is obtained, as shown in Figure 1.
Recently, Liu et al. [13] obtained the maximum Q-index ( q ( G ) ) in non-bipartite C 3 -free graphs with n vertices.
Theorem 1
([13]). Let G be a non-bipartite graph of order n. If
q ( G ) q ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ,
then
G contains a triangle unless G C 5 ( n 4 , 1 , 1 , 1 , 1 ) .
Now, having the family A α ( G ) , Nikiforov [1] merged Problems 1 and 2 into one, namely, the A α -spectral version of the Turán-type problem.
Problem 3
([1]). Given a graph H, what is the maximum λ 1 ( A α ( G ) ) of a graph G of order n or size m, with no subgraph isomorphic to H?
Nikiforov [1] also obtained the extremal graph in K r + 1 -free ( r 2 ) graphs of order n for 0 α < 1 . Inspired by Theorem 1 and the further discussion about the A α -spectral Turán-type problem, in this paper, we shall solve Problem 3 in non-bipartite triangle-free graphs of order n for 1 / 2 < α < 1 .
Theorem 2.
Let G be a C 3 -free non-bipartite graph of order n, 1 / 2 < α < 1 . Then,
λ 1 ( A α ( G ) ) λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) .
The equality holds if and only if G C 5 ( n 4 , 1 , 1 , 1 , 1 ) .
From Theorems 1 and 2, the extremal graph for Q-index is the same as that for A α -index ( 1 / 2 < α < 1 ) among non-bipartite triangle-free graphs of order n.

2. Some Lemmas

We will give some useful lemmas in this section.
Let M be a real n × n matrix and G be a graph with n vertices. Given a partition Π : V ( G ) = V 1 V 2 V k , M can be correspondingly partitioned as
M = M 11 M 12 M 1 k M 21 M 22 M 2 k M k 1 M k 2 M k k .
The quotient matrix of M with respect to Π is defined as the k × k matrix B Π = ( b i , j ) , where b i , j is the average value of all row sums of M i , j . Furthermore, if every row sum of M i , j is equal to b i , j , the matrix B Π is called the equitable quotient matrix.
Lemma 1
([17,18]). Let M be a real symmetric matrix and M have the largest eigenvalue λ ( M ) . Let B Π be an equitable quotient matrix of M. Then, the eigenvalues of B Π are also eigenvalues of M. Furthermore, if M is non-negative and irreducible, then λ ( M ) = λ ( B Π ) .
Lemma 2
([1]). Let α [ 0 , 1 ) and let G be a graph with A α ( G ) = A α . Let u , v , w V ( G ) and suppose that u v E ( G ) and u w E ( G ) . Let H = G u v + u w and x : = ( x 1 , x 2 , , x n ) be a unit eigenvector to λ 1 ( A α ( G ) ) such that x u > 0 and A α ( H ) x , x A α ( G ) x , x . Then, λ 1 ( A α ( H ) ) > λ 1 ( A α ( G ) ) .
Lemma 3.
Let α [ 0 , 1 ) and let G be a connected graph with A α ( G ) = A α . Let u , v , w V ( G ) and suppose that u v E ( G ) and u w E ( G ) . Let H = G u v + u w and x : = ( x 1 , x 2 , , x n ) be the Perron vector of A α ( G ) such that x w x v . Then, λ 1 ( A α ( H ) ) > λ 1 ( A α ( G ) ) .
Proof. 
Note that
A α ( H ) x , x A α ( G ) x , x = u w E ( H ) ( α x u 2 + 2 ( 1 α ) x u x w + α x w 2 ) u v E ( G ) ( α x u 2 + 2 ( 1 α ) x u x v + α x v 2 ) = ( x w x v ) [ 2 ( 1 α ) x u + α ( x v + x w ) ] .
Since G is connected, x u , x w , x v > 0 . And x w x v implies that the above equality is not less than 0, that is to say, A α ( H ) x , x A α ( G ) x , x . By Lemma 2, the result holds. □
Some degree-based bounds for λ 1 ( A α ( G ) ) play very important roles in this survey. We list these bounds as Lemmas 4–6.
Lemma 4
([1]). If G is a graph with no isolated vertices, then
λ 1 ( A α ( G ) ) max u V ( G ) { α d u + ( 1 α ) m u } ,
where m u = 1 d u u v E ( G ) d v . If 1 / 2 < α < 1 and G is connected, the equality holds if and only if G is regular.
Lemma 5
([1]). For any graph G,
λ 1 ( A α ( G ) ) max u v E ( G ) { α d u + ( 1 α ) d v } .
Lemma 6
([1]). Let G be a graph with Δ ( G ) = Δ . If 1 / 2 α < 1 , then
λ 1 ( A α ( G ) ) α Δ + ( 1 α ) 2 / α .
Next, we will discuss the A α -index of the graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) .
Lemma 7. 
Let λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) be the A α -index of the graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) , n 5 . Denote λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) by λ 1 , then
(i) 
λ 1 is the largest root of x 3 ( α n + 1 ) x 2 + [ α 2 n + 5 α ( n 3 ) ( 2 n 7 ) ] x 2 α 2 ( 2 n 5 ) 2 α ( n 5 ) + 2 ( n 4 ) = 0 ;
(ii) 
α ( n 3 ) + ( 1 α ) 2 / α λ 1 for 1 / 2 < α < 1 ;
(iii) 
α ( n 3 ) + ( 1 α ) < λ 1 for 1 / 2 < α 2 / 3 ;
(iv) 
α ( n 2 ) < λ 1 for n 6 and 1 / 2 < α 2 2 .
Proof. 
(i) The vertex set of C 5 ( n 4 , 1 , 1 , 1 , 1 ) can be partitioned as Π : V 1 V 2 V 3 , where V 2 = { v 2 , v 5 } , V 3 = { v 3 , v 4 } and V 1 = V ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) { V 2 V 3 } (see Figure 1). The equitable quotient matrix B Π of the matrix A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) is as follows:
B Π = 2 α 2 ( 1 α ) 0 ( n 4 ) ( 1 α ) α ( n 3 ) 1 α 0 1 α 1 + α .
Then, the characteristic polynomial of B Π is
f ( x ) = | x I 3 B Π | = x 3 ( α n + 1 ) x 2 + [ α 2 n + 5 α ( n 3 ) ( 2 n 7 ) ] x 2 α 2 ( 2 n 5 ) 2 α ( n 5 ) + 2 ( n 4 ) .
By Lemma 1, λ 1 is the largest real zero of f ( x ) . Hence, the result ( i ) follows.
(ii) Since Δ ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) = n 3 , Lemma 6 implies that λ 1 α ( n 3 ) + ( 1 α ) 2 / α for 1 / 2 < α < 1 .
(iii) Suppose that λ 1 = α ( n 3 ) + t , then t > 0 by Lemma 6. And we have f ( α ( n 3 ) + t ) = 0 (for convenience, set g ( t ) = f ( α ( n 3 ) + t ) ), i.e.,
g ( t ) = t 3 + t 2 [ α ( 2 n 9 ) 1 ] + t [ α 2 ( n 2 11 n + 27 ) + 3 α ( n 3 ) ( 2 n 7 ) ] + α 3 ( 2 n 2 + 15 n 27 ) + α 2 ( 4 n 2 28 n + 46 ) α ( 2 n 2 11 n + 11 ) + 2 ( n 4 ) = 0 .
After some algebra, we see that
g ( 1 α ) = α 3 ( 3 n 2 + 28 n 64 ) + α 2 ( 5 n 2 46 n + 102 ) + α ( 2 n 2 + 18 n 37 ) 1 = ( 1 α ) g 1 ( α ) ,
where g 1 ( α ) = α 2 ( 3 n 2 28 n + 64 ) 2 α ( n 2 9 n + 19 ) 1 .
Next, we estimate the value g ( 1 α ) in the case 1 / 2 < α 2 / 3 . If n = 5 , then g 1 ( α ) = ( 1 α ) 2 < 0 ; if n 6 , g 1 ( α ) is increasing for 1 / 2 < α 2 / 3 and g 1 ( 2 / 3 ) = 1 9 ( 4 n 19 ) < 0 . Thus, g ( 1 α ) < 0 . Furthermore, Lemma 5 implies that t 2 ( 1 α ) , so g ( 2 ( 1 α ) ) 0 . Hence, t > 1 α and λ 1 > α ( n 3 ) + ( 1 α ) for 1 / 2 < α 2 / 3 .
(iv) Note that g ( α ) = ( n 4 ) h ( α ) , where
h ( α ) = α 3 ( n 2 ) α 2 ( 4 n 9 ) + α ( 2 n 1 ) 2 .
It is easy to see that h ( α ) = 6 α ( n 2 ) 2 ( 4 n 9 ) < 0 for 1 / 2 < α 2 2 . Thus, h ( α ) is decreasing and h ( α ) < h ( 1 / 2 ) = 1 4 ( 5 n 26 ) < 0 for n 6 . This implies that h ( α ) is decreasing and h ( α ) h ( 2 2 ) = 10 7 2 > 0 . Hence, g ( α ) < 0 , combined with g ( 2 ( 1 α ) ) 0 , yields λ 1 > α ( n 2 ) for 1 / 2 < α 2 2 . □

3. The A α -Index of C 5 ( n 1 , n 2 , n 3 , n 4 , 1 )

Throughout this section, α belongs to the interval ( 1 / 2 , 1 ) . Assume that G has the maximum λ 1 ( A α ( G ) ) among all non-bipartite C 3 -free graphs of order n. We will prove the following result for the extremal graph G.
Lemma 8.
Let G be a graph with the maximum A α -index among all non-bipartite C 3 -free graphs of order n. Then, G C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) .
Proof. 
Since G is C 3 -free and non-bipartite, n 5 holds. In fact, G must be connected. Otherwise, suppose that G 1 is a connected component of G with λ 1 ( A α ( G 1 ) ) = λ 1 ( A α ( G ) ) . Let G 2 = G 1 + e , where e is an edge by joining a vertex of G 1 to a vertex of any connected component of G. Obviously, G 2 is still non-bipartite and triangle-free. However, λ 1 ( A α ( G 2 ) ) > λ 1 ( A α ( G 1 ) ) = λ 1 ( A α ( G ) ) , a contradiction.
Let u v be an edge of G with α d ( u ) + ( 1 α ) d ( v ) = max { α d ( u ) + ( 1 α ) d ( v ) : u v E ( G ) } . Suppose that d ( u ) + d ( v ) = t , d ( u ) = x and
b ( x ) = α x + ( 1 α ) ( t x ) = ( 2 α 1 ) x + ( 1 α ) t .
Since G is connected, d ( u ) 1 and d ( v ) 1 .
Case 1. d ( v ) = 1 .
Obviously, d ( u ) = t 1 and b ( t 1 ) = α ( t 2 ) + 1 . If t n 3 , we see that b ( t 1 ) α ( n 5 ) + 1 < α ( n 3 ) for 1 / 2 < α < 1 . From ( i i ) of Lemmas 5 and 7, we obtain
α ( n 3 ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) λ 1 ( A α ( G ) ) b ( t 1 ) < α ( n 3 ) ,
a contradiction. Hence, t n 2 .
Since G is C 3 -free, there are no common neighbors between u and v , which implies that t n . If t = n 1 or n, we easily know that G is a bipartite graph, a contradiction. If t = n 2 , there exists two vertices w 1 and w 2 of G such that w 1 , w 2 N ( u ) N ( v ) . When w 1 is not adjacent to w 2 , G is a bipartite graph, a contradiction. Hence, w 1 is adjacent to w 2 . Whether N ( w 1 ) = { w 2 } or N ( w 2 ) = { w 1 } , G is still bipartite, a contradiction. Hence, N ( w 1 ) { w 2 } , N ( w 2 ) { w 1 } and N ( w 1 ) N ( w 2 ) { w 1 , w 2 } N ( u ) { v } . Suppose that there is a vertex w N ( u ) { v } and w N ( w 1 ) N ( w 2 ) { w 1 , w 2 } , G + w 1 w is still non-bipartite triangle-free. However, λ 1 ( A α ( G + w 1 w ) ) > λ 1 ( A α ( G ) ) , contrary to the assumption that λ 1 ( A α ( G ) ) is maximal. Therefore, G is the graph as shown in Figure 2. In fact, G C 5 ( n 1 , 1 , 1 , n 4 , 1 ) + u v , n 1 + n 4 = n 4 . Furthermore, C 5 ( n 1 , 1 , 1 , n 4 , 1 ) + u v + v w 2 C 5 ( n 1 , 1 , 1 , n 4 + 1 , 1 ) . Thus, λ 1 ( A α ( G ) ) < λ 1 ( A α ( C 5 ( n 1 , 1 , 1 , n 4 + 1 , 1 ) ) ) , a contradiction.
Case 2. d ( v ) 2 .
Obviously, b ( x ) b ( t 2 ) = α ( t 4 ) + 2 . If t n 2 , we have b ( t 2 ) α ( n 6 ) + 2 < α ( n 3 ) for 2 / 3 < α < 1 . Thus, from ( i i ) of Lemmas 5 and 7, we obtain
α ( n 3 ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) λ 1 ( A α ( G ) ) b ( t 2 ) < α ( n 3 ) ,
a contradiction. Furthermore, b ( t 2 ) α ( n 6 ) + 2 < α ( n 3 ) + ( 1 α ) for 1 / 2 < α 2 / 3 . Applying ( i i i ) of Lemmas 5 and 7, we find that
α ( n 3 ) + ( 1 α ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) λ 1 ( A α ( G ) ) b ( t 2 ) < α ( n 3 ) + ( 1 α ) ,
a contradiction.
Thus, t n 1 holds. The graph G is still a bipartite graph for t = n , a contradiction. Hence, t = n 1 , namely, there is a vertex w of G such that w N ( u ) N ( v ) (see Figure 3). The remaining part of the proof uses an idea borrowed from [13].
Define N 1 = { v N ( u ) : v w E ( G ) } , N 2 = { v N ( v ) : v w E ( G ) } , N 3 = N ( u ) ( N 1 { v } ) and N 4 = N ( v ) ( N 2 { u } ) . Note that G is non-bipartite, we can obtain that N 1 and N 2 . Furthermore, since G is triangle-free, both N 1 and N 4 are independent sets. And G [ N 1 N 4 ] is a complete bipartite graph. Suppose that there exist two vertices v 1 N 1 and v 2 N 4 such that v 1 v 2 E ( G ) . Then, G + v 1 v 2 is still non-bipartite triangle-free. However, λ 1 ( A α ( G + v 1 v 2 ) ) > λ 1 ( A α ( G ) ) , a contradiction. By the same analysis, G [ N 2 N 3 ] and G [ N 3 N 4 ] are also complete bipartite graphs (see Figure 3). Let V 1 = N 1 , V 2 = { u } N 4 , V 3 = { v } N 3 and V 4 = N 2 . Then, i = 1 4 V i = V ( G ) { w } . Set n i = | V i | , i = 1 , , 4 . Obviously, i = 1 4 n i = n 1 . Recall that N 1 , u V 2 , v V 3 and N 2 . Hence, we have n i 1 , where 1 i 4 . It is easy to see that G C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) (see Figure 3). □
Next, we shall consider the A α -index of the graph C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) .
Lemma 9.
Let λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) be the A α -index of C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) , then λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) is the largest root of c ( n 1 , n 2 , n 3 , n 4 ; x ) = 0 .
Proof. 
We partition the vertex set of C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) as Π : V 1 V 2 V 3 V 4 { w } , (see Figure 3). The quotient matrix B Π of the matrix A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) with respect to the partition Π is as follows:
B Π = α ( n 1 + n 4 ) ( 1 α ) n 1 0 0 ( 1 α ) n 4 1 α α ( 1 + n 2 ) ( 1 α ) n 2 0 0 0 ( 1 α ) n 1 α ( n 1 + n 3 ) ( 1 α ) n 3 0 0 0 ( 1 α ) n 2 α ( n 2 + n 4 ) ( 1 α ) n 4 1 α 0 0 ( 1 α ) n 3 α ( 1 + n 3 ) .
By computation, the characteristic polynomial of the quotient matrix B Π is
c ( n 1 , n 2 , n 3 , n 4 ; x ) = | x I 5 B Π | = [ x α ( n 1 + n 4 ) ] d ( x ) ( 1 α ) 2 [ e ( x ) + h ( x ) ] + ( 1 α ) 4 k ( x ) ,
where
d ( x ) = [ x 2 α ( n 1 + n 2 + n 3 + 1 ) x + α 2 ( 1 + n 2 ) ( n 1 + n 3 ) ( 1 α ) 2 n 1 n 2 ] · [ x 2 α ( n 2 + n 3 + n 4 + 1 ) x + α 2 ( 1 + n 3 ) ( n 2 + n 4 ) ( 1 α ) 2 n 3 n 4 ] , e ( x ) = n 2 n 3 [ x α ( n 1 + n 4 ) ] [ x α ( 1 + n 2 ) ] [ x α ( 1 + n 3 ) ] , h ( x ) = [ ( n 1 + n 4 ) x α ( n 1 + n 4 ) α ( n 1 n 3 + n 2 n 4 ) ] · [ x 2 α ( n 1 ) x + α 2 ( n 1 n 2 + n 3 n 4 + n 1 n 4 ) + ( 2 α 1 ) n 2 n 3 ] , k ( x ) = n 1 n 4 [ ( n 2 + n 3 ) x α ( n 2 n 3 ) 2 α ( n 1 n 3 + n 2 n 4 ) 2 n 2 n 3 ] .
Hence, the result holds. □
In the following, for the graph C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) , we always assume that n 2 n 3 . (Otherwise, C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) C 5 ( n 4 , n 3 , n 2 , n 1 , 1 ) , where n 3 < n 2 .) In order to obtain the maximum λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) , n 1 + n 2 + n 3 + n 4 = n 1 , we will take some steps. First, when n 1 , n 4 2 , λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) has the larger value by Lemma 11 under certain conditions.
Lemma 10.
If n 1 , n 4 2 and n 3 n 2 ,
c ( n 1 , n 2 , n 3 , n 4 ; x ) c ( n 1 + n 4 1 , n 2 , n 3 , 1 ; x ) > 0
holds for x > α ( n 3 ) .
Proof. 
Through a direct calculation by (3), we have
c ( n 1 , n 2 , n 3 , n 4 ; x ) c ( n 1 + n 4 1 , n 2 , n 3 , 1 ; x ) = ( n 4 1 ) { [ x α ( n 1 + n 4 ) ] d 1 ( x ) α ( 1 α ) 2 h 1 ( x ) + ( 1 α ) 4 k 1 ( x ) } ,
where
d 1 ( x ) = α 2 ( n 1 1 ) x [ x α ( n 2 + n 3 + 2 ) ] + ( 2 α 1 ) ( n 3 n 2 ) x [ x α ( n 2 + n 3 + 1 ) ] + α ( 1 α ) 2 ( n 2 + n 3 ) ( n 1 1 ) x α 3 ( n 3 n 2 ) x + ( n 1 1 ) [ α 4 ( 1 + n 2 ) ( 1 + n 3 ) α 2 ( 1 α ) 2 ( n 2 + n 3 + 2 n 2 n 3 ) + ( 1 α ) 4 n 2 n 3 ] + ( n 3 n 2 ) [ α 4 ( 1 + n 2 ) ( 1 + n 3 ) α 2 ( 1 α ) 2 ( n 2 + n 3 + n 2 n 3 ) ]
h 1 ( x ) = α ( n 1 + n 4 ) ( n 1 1 + n 3 n 2 ) ( x α ) + ( n 3 n 2 ) [ x 2 α ( n 1 ) x + ( 2 α 1 ) n 2 n 3 ] α 2 { [ ( n 3 n 2 ) 2 + n 2 ] ( n 1 1 ) + n 3 ( n 1 1 ) 2 + ( n 1 n 2 n 3 ) n 4 } , k 1 ( x ) = ( n 1 1 ) [ ( n 2 + n 3 ) x 2 n 2 n 3 ] α { [ ( n 3 n 2 ) 2 + n 2 ] ( n 1 1 ) + n 3 ( n 1 1 ) 2 + ( n 1 n 2 n 3 ) n 4 } .
Note that
[ x α ( n 1 + n 4 ) ] d 1 ( x ) + 2 d 1 ( x ) α ( 1 α ) 2 h 1 ( x ) + ( 1 α ) 4 k 1 ( x ) = 2 { [ α 2 ( n 1 1 ) + ( 2 α 1 ) ( n 3 n 2 ) ] [ x α ( n 1 + n 4 ) ] + ( 2 α 1 ) ( n 3 n 2 ) [ 2 x α ( n 2 + n 3 + 1 ) ] + 2 α 2 ( n 1 1 ) x α 3 [ ( n 2 + n 3 + 2 ) ( n 1 1 ) + ( n 3 n 2 ) ] + α ( 1 α ) 2 [ ( n 2 + n 3 ) ( n 1 1 ) ( n 3 n 2 ) ] } > 0
for x > α ( n 3 ) .
Then,
d 1 ( x ) + [ x α ( n 1 + n 4 ) ] d 1 ( x ) α ( 1 α ) 2 h 1 ( x ) + ( 1 α ) 4 k 1 ( x )
is increasing for x > α ( n 3 ) . Now, we need to estimate the value x = α ( n 3 ) in (5); first, d 1 ( α ( n 3 ) ) , h 1 ( α ( n 3 ) ) , and d 1 ( α ( n 3 ) ) are given, respectively.
d 1 ( α ( n 3 ) ) = α ( 2 α 1 ) ( n 3 n 2 ) ( n 6 + n 1 + n 4 ) + α 3 ( n 1 1 ) ( n 7 + n 1 + n 4 ) + α ( 1 α ) 2 ( n 1 1 ) ( n 3 + n 2 ) α 3 ( n 3 n 2 ) = α ( 2 α 1 ) ( n 3 n 2 ) ( n 5 + n 4 ) + α 3 ( n 3 n 2 ) ( n 1 2 ) ( 0 ) + α 3 ( n 1 1 ) ( n 7 + n 1 + n 4 ) + 2 α ( 1 α ) 2 ( n 1 1 ) n 2 ,
h 1 ( α ( n 3 ) ) = α ( n 1 + n 4 ) ( n 1 1 + n 3 n 2 ) + α ( n 5 ) ( n 3 n 2 ) ,
and
d 1 ( α ( n 3 ) ) = α 4 ( n 3 ) ( n 1 1 ) ( n 1 + n 4 4 ) + α 2 ( 2 α 1 ) ( n 3 ) ( n 3 n 2 ) ( n 1 + n 4 3 ) + α 2 ( 1 α ) 2 ( n 1 1 ) ( n 3 ) ( n 2 + n 3 ) α 4 ( n 3 ) ( n 3 n 2 ) + ( n 1 1 ) [ α 4 + α 2 ( 2 α 1 ) ( n 2 + n 3 + n 2 n 3 ) ( 2 α 1 ) ( 1 α ) 2 n 2 n 3 ] + ( n 3 n 2 ) [ α 4 + α 2 ( 2 α 1 ) ( n 2 + n 3 + n 2 n 3 ) ] .
It is easy to see that
d 1 ( α ( n 3 ) ) > α 2 ( 2 α 1 ) ( n 3 ) ( n 3 n 2 ) ( n 1 + n 4 3 ) + α 2 ( 1 α ) 2 ( n 1 1 ) ( n 3 ) ( n 3 n 2 ) + 2 α 2 ( 1 α ) 2 n 2 ( n 1 1 ) ( n 3 ) α 4 ( n 3 ) ( n 3 n 2 ) ( 2 α 1 ) ( 1 α ) 2 ( n 1 1 ) n 2 n 3 > α 2 ( 2 α 1 ) ( n 3 ) ( n 3 n 2 ) ( n 4 2 ) + α 4 ( n 3 ) ( n 3 n 2 ) ( n 1 2 ) ( 0 ) + α 2 ( 1 α ) 2 n 2 ( n 1 1 ) [ 2 ( n 3 ) n 3 ] .
Combing the above results and k 1 ( α ( n 3 ) > 0 , we find that
( 5 ) > ( 5 ) | x = α ( n 3 ) > α 2 ( 1 α ) 2 n 2 ( n 1 1 ) [ 2 ( n 3 ) n 3 ] α 2 ( 1 α ) 2 ( n 1 + n 4 ) ( n 1 1 ) + α 4 ( n 1 1 ) ( n 2 + n 3 2 ) ( n 1 + n 4 ) α 2 ( 1 α ) 2 ( n 1 + n 4 ) ( n 3 n 2 ) + α 4 ( n 1 1 ) ( n 2 + n 3 2 ) ( n 7 ) α 2 ( 1 α ) 2 ( n 7 ) ( n 3 n 2 ) + 2 α 2 ( 1 α ) 2 [ ( n 1 1 ) n 2 ( n 2 + n 3 2 ) ( n 3 n 2 ) ] > 0 .
Hence, the result holds. □
Lemma 11.
If n 3 n 2 , for x > α ( n 3 ) ,
c ( n 1 , n 2 , n 3 , n 4 ; x ) c ( n 1 + n 4 1 , n 2 , n 3 , 1 ; x ) > 0
holds for the following four cases:
(i) 
n 2 = 1 , n 1 , n 4 3 and n 3 n 4 ;
(ii) 
n 2 = 1 , n 4 = 2 and n 1 , n 3 3 , n 3 n 4 ;
(iii) 
n 1 = 2 , n 2 , n 3 , n 4 2 ;
(iv) 
n 1 3 , n 2 , n 3 , n 4 2 and n 3 n 4 .
Further, if λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) > α ( n 3 ) ,
λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) < λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) .
holds.
Proof. 
Note that all of the below functions are the same with those in Lemma 10; we will not repeat again. For x = α ( n 3 ) , we give h 1 ( α ( n 3 ) ) and k 1 ( α ( n 3 ) ) , respectively, i.e.,
h 1 ( α ( n 3 ) ) = α 2 ( n 3 ) ( n 3 n 2 ) ( n 1 + n 4 2 ) + α 2 ( n 4 ) ( n 1 1 ) ( n 1 + n 4 ) + ( 2 α 1 ) ( n 3 n 2 ) n 2 n 3
α 2 ( n 3 n 2 ) n 1 α 2 ( n 3 n 2 ) n 4 α 2 { [ ( n 3 n 2 ) 2 + n 2 ] ( n 1 1 ) + n 3 ( n 1 1 ) 2 + ( n 1 n 2 n 3 ) n 4 } ,
and
k 1 ( α ( n 3 ) ) = ( n 1 1 ) [ α ( n 3 ) ( n 2 + n 3 ) 2 n 2 n 3 ] ( > 0 ) α { [ ( n 3 n 2 ) 2 + n 2 ] ( n 1 1 ) + n 3 ( n 1 1 ) 2 + ( n 1 n 2 n 3 ) n 4 } .
In view of (4), we find that
α ( 1 α ) 2 ( 7 ) + ( 1 α ) 4 ( 8 ) > α ( 1 α ) 2 n 4 [ α 2 ( n 1 n 2 n 2 ) ( 1 α ) 2 ( n 1 n 2 n 3 ) ] > 0 ,
where the remaining part
α ( n 2 + n 3 2 ) d 1 ( α ( n 3 ) ) α ( 1 α ) 2 ( 6 )
can be reduced to
α 3 ( n 1 1 ) { α 2 ( n 3 ) ( n 1 + n 4 4 ) ( n 2 + n 3 2 ) + ( 1 α ) 2 n 2 ( n 3 n 3 ) ( n 2 + n 3 2 ) ( 1 α ) 2 ( n 4 ) ( n 1 + n 4 ) } + α 3 ( n 3 ) { α 2 ( n 1 2 ) ( n 3 n 2 ) ( n 2 + n 3 2 ) + ( 1 α ) 2 n 2 ( n 1 1 ) ( n 2 + n 3 2 ) ( 1 α ) 2 ( n 3 n 2 ) ( n 1 + n 4 2 ) } + α ( 2 α 1 ) ( n 3 n 2 ) { α 2 ( n 2 + n 3 + n 2 n 3 ) ( n 2 + n 3 2 ) ( 1 α ) 2 n 2 n 3 } .
Now, we shall prove ( 11 ) > 0 . Obviously, ( n 2 + n 3 + n 2 n 3 ) ( n 2 + n 3 2 ) > n 2 n 3 for n 2 + n 3 3 . Next, we consider
( n 2 + n 3 2 ) [ ( n 3 ) ( n 1 + n 4 4 ) + n 2 ( n 3 n 3 ) ] ( n 4 ) ( n 1 + n 4 ) ,
( n 3 n 2 ) [ ( n 1 2 ) ( n 2 + n 3 2 ) ( n 1 + n 4 2 ) ] + n 2 ( n 1 1 ) ( n 2 + n 3 2 ) .
For n 2 = 1 , without loss of generality, we may assume that n 3 n 4 and analyze the following two cases (i) and (ii):
(i) n 2 = 1 , n 1 , n 4 3 and n 3 n 4 .
Since n 1 , n 4 3 , n 1 + n 4 6 . If n 1 + n 4 8 ,
( 12 ) > ( n 4 1 ) ( n 3 ) ( n 1 + n 4 4 ) ( n 4 ) ( n 1 + n 4 ) [ 2 ( n 3 ) ( n 4 ) ] ( n 1 + n 4 ) 8 ( n 3 ) 8 > 0 .
If n 1 + n 4 = 7 , the case n 3 n 4 implies that n 12 , and
( 12 ) = ( n 10 ) [ 3 ( n 3 ) + 6 ] 7 ( n 4 ) = 3 n 2 40 n + 58 10 > 0 .
If n 1 + n 4 = 6 , the case n 3 n 4 implies that n 11 , and
( 12 ) = ( n 9 ) [ 2 ( n 3 ) + 5 ] 6 ( n 4 ) = 2 n 2 25 n + 33 0 .
Furthermore, we see that
( 13 ) ( n 3 1 ) [ ( n 1 2 ) ( n 4 1 ) + ( n 1 1 ) ( n 1 + n 4 2 ) ] = ( n 3 1 ) ( n 1 3 ) ( n 4 1 ) 0 .
(ii) n 2 = 1 , n 4 = 2 and n 1 , n 3 3 , n 3 n 4 .
Note that n 1 + n 3 = n 4 and suppose that n 1 = t ,
( 12 ) = ( n 5 t ) [ ( n 3 ) ( t 2 ) + ( t + 1 ) ] ( n 4 ) ( t + 2 ) = ( n 2 ) t 2 + ( n 2 6 n + 7 ) t 2 n 2 + 15 n 27 .
For n 11 , namely, n 1 + n 3 7 , it is easy to see that ( 12 ) > 0 . Furthermore, ( 13 ) > 0 holds with the same reason as (i). For n = 10 , i.e., n 1 = n 3 = 3 ,
( n 1 1 ) ( 12 ) + ( n 3 ) ( 13 ) + ( n 1 1 ) ( n 3 n 2 ) = 2 ( 2 · 7 + 2 · 4 6 · 5 ) + 7 ( 2 · 2 + 2 · 2 2 · 3 ) + 2 · 2 = 2 > 0 .
This operation adds the term α 5 ( n 2 + n 3 2 ) ( n 1 1 ) to (11), their sum is still less than (10).
When n 1 2 , we discuss the following two cases (iii) and (iv):
(iii) n 1 = 2 and n 2 , n 3 , n 4 2 .
Note that n 2 + n 3 + n 4 = n 3 and n 2 2 ; letting n 4 = t , we find that
( n 1 1 ) ( 12 ) + ( n 3 ) ( 13 ) = ( n 2 + n 3 2 ) [ ( n 3 ) ( n 4 2 ) + ( n 3 ) n 2 + n 2 ( n 2 + n 4 ) ] ( n 4 ) ( n 4 + 2 ) n 4 ( n 3 ) ( n 2 + n 3 2 2 n 2 + 2 ) ( n 5 t ) [ ( n 3 ) ( t 2 ) + 2 ( n 3 ) + 2 ( 2 + t ) ( n 3 ) t ] ( n 4 ) ( t + 2 ) + 2 t ( n 3 ) = 2 t 2 + ( 3 n 16 ) t + 2 n 12 > 0 .
holds for 2 t n 7 .
(iv) n 1 3 , n 2 , n 3 , n 4 2 and n 3 n 4 .
If n 3 3 and n 1 + n 4 6 ,
( 12 ) ( n 3 ) n 3 ( n 1 + n 4 4 ) ( n 4 ) ( n 1 + n 4 ) [ 3 ( n 3 ) ( n 4 ) ] ( n 1 + n 4 ) 12 ( n 3 ) 6 > 0 .
If n 3 3 and n 1 + n 4 = 5 , the case n 2 2 implies that n 11 , and
( 12 ) = ( n 8 ) [ ( n 3 ) + n 2 ( 3 + n 2 ) ] 5 ( n 4 ) n 2 16 n + 44 + 10 n 80 = n 2 6 n 36 19 > 0 .
If n 3 = 2 , by n 2 , n 4 n 3 , we have n 2 = n 4 = 2 and
( 12 ) = 2 [ ( n 3 ) ( n 9 ) + 2 ( n 5 ) ] ( n 4 ) ( n 5 ) = n 2 11 n + 14 4 > 0 .
It is easy to know that
( 13 ) > ( n 3 n 2 ) [ ( n 1 2 ) ( n 2 + n 3 2 ) ( n 1 + n 4 2 ) + n 2 ( n 1 1 ) ] ( n 3 n 2 ) [ ( n 1 2 ) n 4 ( n 1 + n 4 2 ) + 2 ( n 1 1 ) ] = ( n 3 n 2 ) [ ( n 1 3 ) ( n 4 + 1 ) + 3 ] 0 .
Note that α 2 > ( 1 α ) 2 for 1 / 2 < α < 1 , then all the above results produce ( 11 ) > 0 . Hence, ( 10 ) > 0 , with respect to (9), Lemma 10 implies that
c ( n 1 , n 2 , n 3 , n 4 ; x ) c ( n 1 + n 4 1 , n 2 , n 3 , 1 ; x ) > 0
for x > α ( n 3 ) . Therefore, if λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) > α ( n 3 ) ,
λ 1 ( A α ( C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) ) ) < λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) .
The proof is completed. □
Below are two complements for the second case ( i i ) of Lemma 11:
(a) The case with n 2 = 1 , n 3 = n 4 = 2 and n 1 3 is given in the following Lemma 12;
(b) The case with n 2 = 1 and n 1 = 2 is given in the following Lemma 13. Note that in this case, the graph C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) C 5 ( 1 , n 2 , n 3 , 1 , 2 ) , n 2 + n 3 = n 4 .
Lemma 12.
If n 7 , then
λ 1 ( A α ( C 5 ( n 6 , 1 , 2 , 2 , 1 ) ) ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) .
Proof. 
The quotient matrix of the matrix A α ( C 5 ( n 6 , 1 , 2 , 2 , 1 ) ) is
2 α 2 ( 1 α ) 0 ( n 6 ) ( 1 α ) α ( n 4 ) 2 ( 1 α ) 0 1 α 2 + α .
Then, the corresponding characteristic polynomial is
f 1 ( x ) = x 3 [ α ( n 1 ) + 2 ] x 2 + [ α 2 n + 6 α ( n 4 ) 2 ( n 5 ) ] x 4 α 2 ( n 2 ) 2 α ( 3 n 20 ) + 4 ( n 6 ) .
Lemma 1 implies that λ 1 ( A α ( C 5 ( n 6 , 1 , 2 , 2 , 1 ) ) ) is the largest root of f 1 ( x ) = 0 . And
f 1 ( x ) f ( x ) = ( 1 α ) x 2 + [ α ( n 9 ) + 3 ] x 2 α 2 2 α ( 2 n 15 ) + 2 ( n 8 ) ,
where f ( x ) is the polynomial shown in (2). From Lemmas 5 and 6, we see that
α ( n 3 ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) α ( n 3 ) + 2 ( 1 α ) = α ( n 5 ) + 2 .
In view of (15), we have
( 15 ) | x = α ( n 3 ) = α 3 ( n 3 ) 2 2 α 2 ( 3 n 8 ) α ( n 21 ) + 2 ( n 8 ) ,
( 15 ) | x = α ( n 5 ) + 2 = α 3 ( n 5 ) 2 2 α 2 3 α ( n 7 ) + 2 ( n 7 ) .
For 1 / 2 < α < 1 , the right functions of (16) and (17) are both increasing and, therefore,
( 16 ) > ( 16 ) | α = 1 / 2 = 1 8 ( n 2 6 n 3 ) > 0 ,
( 17 ) > ( 17 ) | α = 1 / 2 = 1 8 ( n 2 6 n 7 ) 0 .
Finally, ( 15 ) > 0 holds for α ( n 3 ) < x α ( n 3 ) + 2 ( 1 α ) . Hence, λ 1 ( A α ( C 5 ( n 6 , 1 , 2 , 2 , 1 ) ) ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) . □
Lemma 13.
If n 2 , n 3 2 and n 2 n 3 , then for x α ( n 3 ) + ( 1 α ) 2 α ,
c ˜ ( 1 , n 2 , n 3 , 1 , 2 ; x ) c ˜ ( 1 , 1 , n 5 , 1 , 2 ; x ) > 0 .
Further, if λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 2 ) ) ) α ( n 3 ) + ( 1 α ) 2 α 2 , then
λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 2 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 5 , 1 , 2 ) ) ) .
Proof. 
The quotient matrix of the matrix A α ( C 5 ( 1 , n 2 , n 3 , 1 , 2 ) ) is
2 α 1 α 0 0 1 α 2 ( 1 α ) α ( 2 + n 2 ) ( 1 α ) n 2 0 0 0 ( 1 α ) α ( 1 + n 3 ) ( 1 α ) n 3 0 0 0 ( 1 α ) n 2 α ( 1 + n 2 ) 1 α 2 ( 1 α ) 0 0 ( 1 α ) n 3 α ( 2 + n 3 ) .
Then, the corresponding characteristic polynomial is
c ˜ ( 1 , n 2 , n 3 , 1 , 2 ; x ) = ( x 2 α ) d ˜ ( x ) ( 1 α ) 2 [ e ˜ ( x ) + 2 h ˜ ( x ) ] + 2 ( 1 α ) 4 k ˜ ( x ) ,
where
d ˜ ( x ) = [ x 2 α ( n 1 ) x + α 2 ( 2 + n 2 ) ( 1 + n 3 ) ( 1 α ) 2 n 2 ] · [ x 2 α ( n 1 ) x + α 2 ( 1 + n 2 ) ( 2 + n 3 ) ( 1 α ) 2 n 3 ] , e ˜ ( x ) = n 2 n 3 ( x 2 α ) [ x α ( 2 + n 2 ) ] [ x α ( 2 + n 3 ) ] , h ˜ ( x ) = ( 2 x α n ) [ x 2 α ( n 2 ) x + α 2 ( n 3 ) + ( 2 α 1 ) n 2 n 3 ] , k ˜ ( x ) = ( n 4 ) x α ( n 2 n 3 ) 2 α ( n 4 ) 2 n 2 n 3 .
Applying (18), we have
c ˜ ( 1 , n 2 , n 3 , 1 , 2 ; x ) c ˜ ( 1 , 1 , n 5 , 1 , 2 ; x ) = ( n 2 1 ) ( n 3 1 ) c ˜ ( x ) ,
where
c ˜ ( x ) = ( x 2 α ) { 2 α 2 ( x α ) ( x α ( n 2 ) ) + α 4 ( n 2 n 3 + n 2 ) + α 2 ( 2 α 1 ) ( n 6 ) + ( 1 α ) 4 ( 1 α ) 2 [ ( x 2 α ) ( x α ( n 2 ) ) + α 2 ( n 2 n 3 + n 5 ) ] } 2 ( 1 α ) 2 ( 2 α 1 ) [ 2 x α n ] + 4 ( 1 α ) 4 ( 2 α 1 ) .
Note that
c ˜ ( x ) = 2 ( α 2 + 2 α 1 ) [ 3 x α n ] 4 α ( 2 α 1 ) > c ˜ ( α ( n 3 ) ) > 0 .
Then, c ˜ ( x ) is increasing for x > α ( n 3 ) and
c ˜ ( x ) = [ 2 α 2 ( x α ) ( 1 α ) 2 ( x 2 α ) ] ( 2 x α n ) + ( α 2 + 2 α 1 ) ( x 2 α ) ( x α ( n 2 ) ) + 3 α 4 + α 2 ( 2 α 1 ) ( n 2 n 3 + 2 n 11 ) + ( 1 α ) 4 > c ˜ ( α ( n 3 ) ) > α 4 ( n 2 10 n + 23 ) + α 2 ( 2 α 1 ) ( n 5 ) ( n 7 ) > 0 .
Hence, c ˜ ( x ) is increasing and the value x = α ( n 3 ) + ( 1 α ) 2 α is larger than
α ( n 5 ) [ 2 α 4 + α 2 ( 2 α 1 ) ( n 2 n 3 4 ) + ( 2 α 1 ) ( 1 α ) 2 ( n 7 ) ] > 0 .
Finally, for x α ( n 3 ) + ( 1 α ) 2 α , we have
c ˜ ( 1 , n 2 , n 3 , 1 , 2 ; x ) c ˜ ( 1 , 1 , n 5 , 1 , 2 ; x ) > 0 .
Further, if λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 2 ) ) ) α ( n 3 ) + ( 1 α ) 2 α 2 , then
λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 2 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 5 , 1 , 2 ) ) ) .
We complete the proof. □
Next, the A α -index of C 5 ( 1 , n 2 , n 3 , 1 , 1 ) , n 2 + n 3 = n 3 , will be shown as follows.
Lemma 14.
If n 2 , n 3 2 and n 2 n 3 , then
λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) .
Proof. 
Clearly, C 5 ( 1 , 1 , n 4 , 1 , 1 ) C 5 ( n 4 , 1 , 1 , 1 , 1 ) . Since n 2 , n 3 2 , n 7 . The case n = 7 needs to be considered separately. According to Lemma 12, we obtain λ 1 ( A α ( C 5 ( 1 , 2 , 2 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 3 , 1 , 1 , 1 , 1 ) ) ) . When n > 7 , applying (3) ( n 1 = n 4 = 1 ), we see that
c ( 1 , n 2 , n 3 , 1 ; x ) c ( 1 , 1 , n 4 , 1 ; x ) = ( n 2 1 ) ( n 3 1 ) c ( x ) ,
where
c ( x ) = ( x 2 α ) { ( α 2 + 2 α 1 ) ( x α ) [ ( x α ( n 2 ) ] + α 2 ( 2 α 1 ) ( n 2 n 3 1 ) + [ α 2 ( n 4 ) + ( 2 α 1 ) ] ( 4 α 2 α 2 ) } ( 1 α ) 2 ( 2 α 1 ) [ x α ( n 3 ) ] + 2 ( 1 α ) 4 ( 2 α 1 ) .
Clearly,
c ( x ) = 2 ( α 2 + 2 α 1 ) [ 3 x α ( n + 1 ) ] > c ( α ( n 3 ) ) = 4 ( α 2 + 2 α 1 ) α ( n 4 ) > 0 .
Therefore, c ( x ) is increasing for x > α ( n 3 ) and
c ( x ) = ( α 2 + 2 α 1 ) { ( x α ) [ ( x α ( n 2 ) ] + ( x 2 α ) [ ( x α ( n 2 ) ] + ( x α ) ( x 2 α ) } + α 2 ( 2 α 1 ) ( n 2 n 3 1 ) + [ α 2 ( n 4 ) + ( 2 α 1 ) ] ( 4 α 2 α 2 ) ( 1 α ) 2 ( 2 α 1 ) > c ( α ( n 3 ) ) > α 4 ( n 2 12 n + 33 ) + α 2 ( 2 α 1 ) ( n 2 11 n + 27 ) > 0 .
Then, c ( x ) is increasing for x > α ( n 3 ) .
Now, we consider the following four cases:
(i) 2 / 3 < α < 1 .
Note that 3 / 4 < 2 α 1 α 2 < 1 , we find that
c ( x ) c α ( n 3 ) + ( 1 α ) 2 α = α 2 ( 2 α 1 ) α ( n 5 ) + ( 1 α ) 2 α · [ n 2 n 3 + n 7 ( n 4 ) α 2 2 α 1 ( n 6 ) 2 α 1 α 2 + ( 2 α 1 ) 2 α 4 ] + ( 2 α 1 ) ( 1 α ) 4 ( 2 1 α ) > α 2 ( 2 α 1 ) [ 2 ( n 5 ) + n 7 4 3 ( n 4 ) 3 4 ( n 6 ) ] = α 2 ( 2 α 1 ) 12 ( 11 n 86 ) > 0 .
Hence, ( 19 ) > 0 for x α ( n 3 ) + ( 1 α ) 2 α . And ( i i ) of Lemma 7 implies that λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) α ( n 3 ) + ( 1 α ) 2 α . Then, λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) .
(ii) 2 2 α 2 / 3 .
By the monotonicity of c ( x ) and 1 / 2 2 α 1 α 2 3 / 4 , we see that
c ( x ) c ( α ( n 3 ) + ( 1 α ) ) = α 2 ( 2 α 1 ) ( α ( n 6 ) + 1 ) · [ n 2 n 3 1 ( n 4 ) α 2 2 α 1 + ( n 5 ) ( 1 α α ) + 2 α 1 α 2 ] ( 2 α 1 ) 2 ( 1 α ) 3 α 3 ( 2 α 1 ) [ 2 n 11 2 ( n 4 ) + 5 6 ( n 5 ) + 1 2 ] ( 2 α 1 ) 2 ( 1 α ) 3 = α 3 ( 2 α 1 ) 5 6 ( n 8 ) ( 2 α 1 ) 2 ( 1 α ) 3 > 0 . ( n 9 )
For n = 8 ( n 2 = 2 , n 3 = 3 ), it is not hard to see that
c ( x ) c ( 4 α + 1 ) = ( 2 α + 1 ) ( 10 α 4 + 13 α 3 + 5 α 2 7 α + 1 ) ( 2 α 1 ) 2 ( 1 α ) 3 > 0 .
Hence, ( 19 ) > 0 holds for x α ( n 3 ) + ( 1 α ) . And ( i i i ) of Lemma 7 implies that λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) > α ( n 3 ) + ( 1 α ) . Then, λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) .
For 1 / 2 < α < 2 2 , we rewrite c ( x ) as the following form:
c ( x ) = ( x 2 α ) { α 2 ( x α ) [ ( x α ( n 2 ) ] + α 2 ( n 3 ) ( 6 α 3 α 2 ) + α 2 ( 2 α 1 ) ( n 2 n 3 n + 2 ) + ( 1 α ) 2 ( α 2 4 α + 2 ) + ( 2 α 1 ) ( x α ) [ ( x α ( n 2 ) ] } ( 1 α ) 2 ( 2 α 1 ) [ x α ( n 3 ) ] + 2 ( 1 α ) 4 ( 2 α 1 ) .
(iii) 3 6 α < 2 2 .
By the monotonicity of c ( x ) , we see that
c ( x ) c ( α ( n 2 ) ) > α ( n 4 ) [ α 2 ( n 3 ) ( 6 α 3 α 2 ) + ( 1 α ) 2 ( α 2 4 α + 2 ) ] + ( 2 α 1 ) [ α 2 ( n 2 n 3 n + 2 ) + ( 1 α ) 2 ( 2 α 2 5 α + 2 ) ] > 0 .
Hence, ( 19 ) > 0 holds for x α ( n 2 ) . And ( i v ) of Lemma 7 implies that λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) > α ( n 2 ) . Then, λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) .
(iv) 1 / 2 < α < 3 6 .
Suppose that
c 1 ( x ) = ( x α ) [ ( x α ( n 2 ) ] + ( n 3 ) ( 6 α 3 α 2 ) ,
where its largest real zero is denoted by x 1 . Obviously, α ( n 2 ) < x 1 < α ( n 1 ) , and at the same time,
x 1 3 = α ( n 1 ) x 1 2 [ α 2 + 3 ( 2 α 1 ) ( n 3 ) ] x 1 , x 1 2 = α ( n 1 ) x 1 [ α 2 + 3 ( 2 α 1 ) ( n 3 ) ) ] .
Put x 1 in (2) and apply the above two equations; we find that
f ( x 1 ) = ( n 2 ) ( 1 2 α ) x 1 + α 3 + α 2 ( 2 n 7 ) + α ( n + 1 ) n + 1 < α 3 α 2 ( 2 n 2 10 n + 15 ) + α ( n 2 3 n + 5 ) n + 1 < 0 .
So, x 1 < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) . For x = λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) , clearly, c ( x ) > 0 . From (19), λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) . The proof is completed. □

4. Proof of Theorem 2

Now, we are in a position to present the proof of Theorem 2.
Proof. 
Suppose that G has the maximum A α -index in non-bipartite graphs of order n without triangle. By Lemma 8, we obtain G C 5 ( n 1 , n 2 , n 3 , n 4 , 1 ) as shown in Figure 3.
Case 1. n 4 = 1 or n 1 = 1 .
Specially, when n 1 = n 4 = 1 , we have G C 5 ( 1 , n 2 , n 3 , 1 , 1 ) . Further, n 2 = 1 or n 3 = 1 implies that G C 5 ( n 4 , 1 , 1 , 1 , 1 ) ; otherwise, by Lemma 14, λ 1 ( A α ( C 5 ( 1 , n 2 , n 3 , 1 , 1 ) ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 4 , 1 , 1 ) ) ) , a contradiction.
Next, we may assume that n 4 = 1 and n 1 2 . Let V 4 = { v 4 } and x : = ( x v ) v V ( G ) be the Perron vector of A α ( G ) . Recall that n 3 1 , so we can choose a vertex v 3 V 3 . If n 3 2 , there exists at least one vertex z V 3 { v 3 } . Without loss of generality, suppose that x w x v 4 . Define a new graph G = G z v 4 + z w for z V 3 { v 3 } ; obviously, G is still non-bipartite triangle-free. However, Lemma 3 implies that λ 1 ( A α ( G ) ) < λ 1 ( A α ( G ) ) , a contradiction. Hence, n 3 = 1 . Further, if n 2 = 1 , then G C 5 ( n 4 , 1 , 1 , 1 , 1 ) ; otherwise, G C 5 ( n 1 , n 2 , 1 , 1 , 1 ) , which is the same as C 5 ( 1 , n 1 , n 2 , 1 , 1 ) . However, Lemma 14 induces a contradiction.
Case 2. n 2 = 1 and n 1 , n 4 2 or n 3 = 1 and n 1 , n 4 2 .
We may assume that n 2 = 1 and n 1 , n 4 2 . If n 3 = 1 , then G C 5 ( n 1 , 1 , 1 , n 4 , 1 ) ; obviously, V 2 = { u } and V 3 = { v } . Let x : = ( x v ) v V ( G ) be the Perron vector of A α ( G ) . Without loss of generality, suppose that x u x v . Let G = G v v 4 + u v 4 for v 4 V 4 , clearly G is still non-bipartite triangle-free. However, Lemma 3 implies that λ 1 ( A α ( G ) ) < λ 1 ( A α ( G ) ) , a contradiction.
If n 3 2 , the condition n 3 n 4 can always be achieved by n 2 = 1 . By ( i i ) of Lemma 7,
λ 1 ( A α ( G ) ) λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) α ( n 3 ) + ( 1 α ) 2 α > α ( n 3 ) .
Applying ( i ) and ( i i ) of Lemma 11 in the case n 1 , n 4 3 and the case n 4 = 2 with n 1 , n 3 3 , respectively, we find that λ 1 ( A α ( G ) ) < λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) , contrary to the assumption that λ 1 ( A α ( G ) ) is maximal. For n 3 = n 4 = 2 and n 1 3 , by Lemma 12, we know that λ 1 ( A α ( C 5 ( n 6 , 1 , 2 , 2 , 1 ) ) ) < λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) , a contraction. For n 1 = 2 , since C 5 ( 2 , 1 , n 3 , n 4 , 1 ) C 5 ( 1 , n 4 , n 3 , 1 , 2 ) , by Lemma 13, we see that λ 1 ( A α ( G ) ) < λ 1 ( A α ( C 5 ( 1 , 1 , n 5 , 1 , 2 ) ) ) , which contradicts the maximality of λ 1 ( A α ( G ) ) .
Case 3. n i 2 for i = 1 , , 4 .
If n 1 = 2 , from ( i i i ) of Lemma 11, we see that λ 1 ( A α ( G ) ) < λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) , a contradiction with the maximum λ 1 ( A α ( G ) ) .
Let u * be a vertex of G, which satisfies that α d ( u * ) + ( 1 α ) m ( u * ) = max { α d ( u ) + ( 1 α ) m ( u ) , u V ( G ) } . From Lemma 4, we obtain λ 1 ( A α ( G ) ) α d ( u * ) + ( 1 α ) m ( u * ) . It is not hard to see that u * V 2 V 3 , without loss of generality, suppose that n 2 n 3 . First, if u * V 2 , then
α d ( u * ) + ( 1 α ) m ( u * ) = α ( n 1 + n 3 ) + ( 1 α ) n 1 ( 1 + n 2 ) + n 3 ( n 2 + n 4 ) n 1 + n 3 = α ( n 1 + n 3 ) + ( 1 α ) ( n 2 + 1 ) ( n 1 + n 3 ) + n 3 ( n 4 1 ) n 1 + n 3 = α n 1 + n 3 n 2 1 n 3 ( n 4 1 ) n 1 + n 3 + ( n 2 + 1 ) + n 3 ( n 4 1 ) n 1 + n 3 .
And by Lemma 6 and ( i i ) Lemma 7, we have
α ( n 3 ) + ( 1 α ) 2 α λ 1 ( A α ( C 5 ( n 4 , 1 , 1 , 1 , 1 ) ) ) λ 1 ( A α ( G ) ) α d ( u * ) + ( 1 α ) m ( u * ) .
Hence,
α ( n 3 ) + ( 1 α ) 2 α α ( n 1 + n 3 n 2 1 n 3 ( n 4 1 ) n 1 + n 3 ) + ( n 2 + 1 ) + n 3 ( n 4 1 ) n 1 + n 3 ,
i.e.,
α 2 n 2 1 + n 4 + n 3 ( n 4 1 ) n 1 + n 3 + ( 1 α ) 2 α ( n 2 + 1 ) + n 3 ( n 4 1 ) n 1 + n 3 .
Let
p ( α ) = α 2 n 2 1 + n 4 + n 3 ( n 4 1 ) n 1 + n 3 + ( 1 α ) 2 α
and for 1 / 2 < α < 1 ,
p ( α ) = 2 n 2 1 + n 4 + n 3 ( n 4 1 ) n 1 + n 3 + 1 1 α 2 > 2 ( n 2 2 ) + n 4 + n 3 ( n 4 1 ) n 1 + n 3 > 0 .
So, p ( α ) > p ( 1 / 2 ) and
1 2 2 n 2 + n 4 + n 3 ( n 4 1 ) n 1 + n 3 < ( n 2 + 1 ) + n 3 ( n 4 1 ) n 1 + n 3 ,
namely, n 1 ( n 4 2 ) < n 3 , which is equivalent to n 4 + ( n 1 1 ) ( n 4 2 ) 2 < n 3 . If n 1 3 , n 3 n 4 holds. Furthermore, if u * V 3 , the proof works along the same lines as u * V 2 . We obtain n 4 ( n 1 2 ) < n 2 , which implies that n 3 n 2 > n 4 in the supposition n 1 3 . So, by ( i v ) of Lemma 11, we know that λ 1 ( A α ( G ) ) < λ 1 ( A α ( C 5 ( n 1 + n 4 1 , n 2 , n 3 , 1 , 1 ) ) ) , contrary to the assumption that λ 1 ( A α ( G ) ) is maximal.
Finally, only the graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) has the maximal A α -index. The proof is completed. □

5. Concluding Remarks

In this paper, we explored the A α -index of a triangle-free non-bipartite graph with order n and obtained the extremal graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) , 1 / 2 < α < 1 . For the case 0 < α < 1 / 2 , we will undertake further discussion in our subsequent research.

Author Contributions

Formal analysis, H.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by the Basic Research Project of Shanxi Province (No. 202103021224284).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

There are no conflicts of interest.

References

  1. Nikiforov, V. Merging the A- and Q- spectral theories. Appl. Anal. Discret. Math. 2017, 11, 81–107. [Google Scholar] [CrossRef]
  2. Füredi, Z.; Simonovits, M. The history of degenerate (bipartite) extremal graph problems. Bolyai Soc. Stud. Erdős Centen. 2013, 25, 167–262. [Google Scholar]
  3. Nikiforov, V. The spectral radius of graphs without paths and cycles of specified length. Linear Algebra Appl. 2010, 432, 2243–2256. [Google Scholar] [CrossRef]
  4. de Freitas, M.A.A.; Nikiforov, V.; Patuzzi, L. Maxima of the Q-index: Forbidden 4-cycle and 5-cycle. Electron. J. Linear Algebra 2013, 26, 905–916. [Google Scholar] [CrossRef]
  5. Zhai, M.Q.; Wang, B. Proof of a conjecture on the spectral radius of C4-free graphs. Linear Algebra Appl. 2012, 437, 1641–1647. [Google Scholar] [CrossRef]
  6. Zhai, M.Q.; Lin, H.Q. Spectral extrema of graphs: Forbidden hexagon. Discret. Math. 2020, 343, 112028. [Google Scholar] [CrossRef]
  7. Nikiforov, V.; Yuan, X.Y. Maxima of the Q-index: Forbidden even cycles. Linear Algebra Appl. 2015, 471, 636–653. [Google Scholar] [CrossRef]
  8. Yuan, X.Y. Maxima of the Q-index: Forbidden odd cycles. Linear Algebra Appl. 2014, 458, 207–216. [Google Scholar] [CrossRef]
  9. He, B.; Jin, Y.L.; Zhang, X.D. Sharp bounds for the signless Laplacian spectral radius in terms of clique number. Linear Algebra Appl. 2013, 438, 3851–3861. [Google Scholar] [CrossRef]
  10. Nikiforov, V. Some new results in extremal graph theory. In Surveys in Combinatorics; Cambridge University Press: Cambridge, MA, USA, 2011; pp. 141–182. [Google Scholar]
  11. Cioabǎ, S.; Desai, D.N.; Tait, M. The spectral even cycle problem. arXiv 2022, arXiv:2205.00990. [Google Scholar] [CrossRef]
  12. de Freitas, M.A.A.; Nikiforov, V.; Patuzzi, L. Maxima of the Q-index: Graphs with no Ks,t. Linear Algebra Appl. 2016, 496, 381–391. [Google Scholar] [CrossRef]
  13. Liu, R.F.; Miao, L.; Xue, J. Maxima of the Q-index of non-bipartite C3-free graphs. Linear Algebra Appl. 2023, 673, 1–13. [Google Scholar] [CrossRef]
  14. Lin, H.Q.; Zhai, M.Q.; Zhao, Y.H. Spectral radius, edge-disjoint cycles and cycles of the same length. Electron. J. Comb. 2022, 29, P2.1. [Google Scholar] [CrossRef] [PubMed]
  15. Wang, J.; Kang, L.Y.; Xue, X.S. On a conjecture of spectral extremal problems. J. Comb. Theory B 2023, 159, 20–41. [Google Scholar] [CrossRef]
  16. Zhai, M.Q.; Lin, H.Q.; Shu, J.L. Spectral extrema of graphs with fixed size: Cycles and complete bipartite graphs. Eur. J. Comb. 2021, 95, 103322. [Google Scholar] [CrossRef]
  17. Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: Berlin, Germany, 2011. [Google Scholar]
  18. Godsil, C.; Royle, G. Algebraic Graph Theory. In Graduate Texts in Mathematics; Springer Verlag: New York, NY, USA, 2001; Volume 207. [Google Scholar]
Figure 1. The graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) .
Figure 1. The graph C 5 ( n 4 , 1 , 1 , 1 , 1 ) .
Mathematics 13 00454 g001
Figure 2. C 5 ( n 1 , 1 , 1 , n 4 , 1 ) + u v .
Figure 2. C 5 ( n 1 , 1 , 1 , n 4 , 1 ) + u v .
Mathematics 13 00454 g002
Figure 3. A blow up of C 5 .
Figure 3. A blow up of C 5 .
Mathematics 13 00454 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, H.; Lei, Y. Maxima of the Aα-Index of Non-Bipartite C3-Free Graphs for 1/2 < α < 1. Mathematics 2025, 13, 454. https://doi.org/10.3390/math13030454

AMA Style

Zhang H, Lei Y. Maxima of the Aα-Index of Non-Bipartite C3-Free Graphs for 1/2 < α < 1. Mathematics. 2025; 13(3):454. https://doi.org/10.3390/math13030454

Chicago/Turabian Style

Zhang, Haixia, and Yu Lei. 2025. "Maxima of the Aα-Index of Non-Bipartite C3-Free Graphs for 1/2 < α < 1" Mathematics 13, no. 3: 454. https://doi.org/10.3390/math13030454

APA Style

Zhang, H., & Lei, Y. (2025). Maxima of the Aα-Index of Non-Bipartite C3-Free Graphs for 1/2 < α < 1. Mathematics, 13(3), 454. https://doi.org/10.3390/math13030454

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop