On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation
Abstract
:1. Introduction
- (A1)
- such that , and
- (A2)
- for all
- (A3)
2. Preliminaries
- (i)
- for and
- (ii)
- (iii)
- see [31].
- for ,
- for , and
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 2001, 262, 601–622. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; Wong, P.J. On the bounded oscillation of certain fourth order functional differential equations. Nonlinear Dyn. Syst. Theory 2005, 5, 215–227. [Google Scholar]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bazighifan, O. Oscillatory behavior of higher-order delay differential equations. Gen. Lett. Math. 2017, 2, 105–110. [Google Scholar]
- Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef]
- Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Equ. 2020, 201, 1–12. [Google Scholar] [CrossRef]
- Bazighifan, O.; Cesarano, C. A Philos-type oscillation criteria for fourth-order neutral differential equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef]
- Bazighifan, O.; Al-Kandari, M.; Al-Ghafri, K.S.; Ghanim, F.; Askar, S.; Oros, G.I. Delay Differential Equations of Fourth-Order: Oscillation and Asymptotic Properties of Solutions. Symmetry 2021, 13, 2015. [Google Scholar] [CrossRef]
- Dassios, I.; Muhib, A.; El-Marouf, S.A.; Elagan, S.K. Oscillation of Neutral Differential Equations with Damping Terms. Mathematics 2023, 11, 447. [Google Scholar] [CrossRef]
- Dong, J.G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput. Math. Appl. 2010, 59, 3710–3717. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. Oscillation theorems for fourth-order delay differential equations with a negative middle term. Math. Methods Appl. Sci. 2017, 40, 7830–7842. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Thandapani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]
- El-Gaber, A.A.; El-Sheikh, M.M.A.; El-Saedy, E.I. Oscillation of super-linear fourth-order differential equations with several sub-linear neutral terms. Bound. Value Probl. 2022, 2022, 41. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Graef, J.R. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Hou, C.; Cheng, S.S. Asymptotic dichotomy in a class of fourth-order nonlinear delay differential equations with damping. In Abstract and Applied Analysis; Hindawi: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Moaaz, O.; Cesarano, C.; Muhib, A. Some new oscillation results for fourth-order neutral differential equations. Eur. J. Pure Appl. Math. 2020, 13, 185–199. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. [Google Scholar] [CrossRef]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef]
- Park, C.; Moaaz, O.; Bazighifan, O. Oscillation Results for Higher Order Differential Equations. Axioms 2020, 9, 14. [Google Scholar] [CrossRef]
- Qaraad, B.; AL Nuwairan, M. Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations. AIMS Math. 2023, 8, 23800–23814. [Google Scholar] [CrossRef]
- Tripathy, A. Oscillation of fourth order nonlinear neutral difference equations I. Math. Slovaca 2008, 58, 221–240. [Google Scholar] [CrossRef]
- Tunc, C.; Bazighifan, O. Some new oscillation criteria for fourth-order neutral differential equations with distributed delay. Electron. J. Math. Anal. Appl. 2019, 7, 235–241. [Google Scholar]
- Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Saker, S.H. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–309. [Google Scholar] [CrossRef]
- Benhiouna, S.; Bellour, A.; Alhuzally, R.; Alghamdi, A.M. Existence of Solutions for Generalized Nonlinear Fourth-Order Differential Equations. Mathematics 2024, 12, 4002. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence and Nonexistence Results for a Fourth-Order Boundary Value Problem with Sign-Changing Green’s Function. Mathematics 2024, 12, 2456. [Google Scholar] [CrossRef]
- Salma Aljawia, K.; Hussainb, S.; Shahc, K.; Abdeljawadc, T. On the numerical solution of second order delay differential equations via a novel approach. J. Math. Comput. Sci. 2025, 36, 1–16. [Google Scholar] [CrossRef]
- Hamza, A.E.; Alghamdi, M.A.; Alasmi, S.A. Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear quantum difference equations. J. Math. Comput. Sci. 2024, 35, 336–347. [Google Scholar] [CrossRef]
- Joy, D.; Kumar, D. Computational techniques for singularly perturbed reaction-diffusion delay differential equations. a second-order approach. J. Math. Comput. Sci. 2024, 35, 304–318. [Google Scholar] [CrossRef]
- Olutimo, A.L.; Bilesanmi, A.; Omoko, I.D. Stability and Boundedness Analysis for a System of Two Nonlinear Delay Differential. Equ. J. Nonlinear Sci. Appl. 2023, 16, 90–98. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, X.; Liu, S. New Oscillation Criteria for the Second Order Nonlinear Differential Equations with Damping. J. Appl. Math. Phys. 2016, 4, 1179–1185. [Google Scholar] [CrossRef]
- Kiguradze, I.; Chanturia, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Springer Science Business Media: Berlin/Heidelberg, Germany, 2012; Volume 89. [Google Scholar]
- Rogovchenko, Y.V.; Tuncay, F. Oscillation theorems for a class of second order nonlinear differential equations with damping. Taiwan J. Math. 2009, 13, 1909–1928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazen, M.; El-Sheikh, M.M.A.; Euat Tallah, S.; Ismail, G.A.F. On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation. Mathematics 2025, 13, 494. https://doi.org/10.3390/math13030494
Mazen M, El-Sheikh MMA, Euat Tallah S, Ismail GAF. On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation. Mathematics. 2025; 13(3):494. https://doi.org/10.3390/math13030494
Chicago/Turabian StyleMazen, Mohamed, Mohamed M. A. El-Sheikh, Samah Euat Tallah, and Gamal A. F. Ismail. 2025. "On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation" Mathematics 13, no. 3: 494. https://doi.org/10.3390/math13030494
APA StyleMazen, M., El-Sheikh, M. M. A., Euat Tallah, S., & Ismail, G. A. F. (2025). On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation. Mathematics, 13(3), 494. https://doi.org/10.3390/math13030494