Online Machine Learning for Intrusion Detection in Electric Vehicle Charging Systems
Abstract
:1. Introduction
- First application of online learning—This is the first study to apply online learning for EVCS intrusion detection, enabling real-time adaptability to evolving data streams.
- Integration of ARF with drift detection—The ARF classifier is combined with ADWIN drift detection, providing robust handling of concept drifts and dynamic attack patterns.
- Real-time scalability—The system ensures efficient real-time performance and scalability for large, complex EVCS networks.
- EVCS-specific protocol Integration—The framework incorporates OCPP and ISO 15118 protocols, ensuring compatibility with existing EV infrastructure standards.
- Real-world deployment architecture—This work presents a practical and efficient design for intrusion detection in EVCS.
2. Related Works
3. Materials and Methods
3.1. Proposed Online Intrusion Detection System
3.2. Proposed Online Machine Learning
- Step 1: Data Preparation and Streaming
- Step 2: Preprocessing and Classifier Initialization
- Step 3: Metric Evaluation
- Step 4: Drift Detection
- Step 5: Online Training, Evaluation, and Drift Handling
3.3. Data Preprocessing
4. Results
4.1. Experimental Setup
4.2. Binary Classification Results
4.3. Multiclass Classification Results
5. Discussion
5.1. Discussion of Binary Classification
5.2. Discussion of Multiclass Classification
5.3. Comparison with Existing Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baronchelli, M.; Falabretti, D.; Gulotta, F. Power Demand Patterns of Public Electric Vehicle Charging: A 2030 Forecast Based on Real-Life Data. Sustainability 2025, 17, 1028. [Google Scholar] [CrossRef]
- Aldossary, M.; Alharbi, H.A.; Ayub, N. Optimizing Electric Vehicle (EV) Charging with Integrated Renewable Energy Sources: A Cloud-Based Forecasting Approach for Eco-Sustainability. Mathematics 2024, 12, 2627. [Google Scholar] [CrossRef]
- Global EV Charging Station Market Is Projected to Reach USD 12.1 Billion by 2030. Available online: https://www.midaevse.com/news/global-ev-charging-station-market-is-projected-to-reach-usd-12-1-billion-by-2030/ (accessed on 8 May 2024).
- Mültin, M. ISO 15118 as the Enabler of Vehicle-to-Grid Applications. In Proceedings of the 2018 International Conference of Electrical and Electronic Technologies for Automotive, Milan, Italy, 9–11 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Alcaraz, C.; Lopez, J.; Wolthusen, S. OCPP Protocol: Security Threats and Challenges. IEEE Trans. Smart Grid 2017, 8, 2452–2459. [Google Scholar] [CrossRef]
- Priyasta, D.; Hadiyanto; Septiawan, R. An Overview of EV Roaming Protocols. In Proceedings of the 7th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2022), Semarang, Lndonesia, 9–10 August 2022; Volume 359, p. 05006. [Google Scholar] [CrossRef]
- Tejeida-Padilla, R.; Berdeja-Rocha, E.M.; Badillo-Piña, I.; Pérez-Matamoros, Z.; Amador-Santiago, J.E. A Comprehensive Review of Electric Charging Stations with a Systemic Approach. World Electr. Veh. J. 2024, 15, 571. [Google Scholar] [CrossRef]
- Santos, J.B.; Francisco, A.M.B.; Cabrita, C.; Monteiro, J.; Pacheco, A.; Cardoso, P.J.S. Development and Implementation of a Smart Charging System for Electric Vehicles Based on the ISO 15118 Standard. Energies 2024, 17, 3045. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Choi, J.Y. Improving TCP Performance in Vehicle-To-Grid (V2G) Communication. Electronics 2019, 8, 1206. [Google Scholar] [CrossRef]
- Kirchner, S.R. OCPP Interoperability: A Unified Future of Charging. World Electr. Veh. J. 2024, 15, 191. [Google Scholar] [CrossRef]
- Hsaini, S.; Ghogho, M.; Charaf, M.E.H. An OCPP-Based Approach for Electric Vehicle Charging Management. Energies 2022, 15, 6735. [Google Scholar] [CrossRef]
- Hamdare, S.; Brown, D.J.; Cao, Y.; Aljaidi, M.; Kumar, S.; Alanazi, R.; Jugran, M.; Vyas, P.; Kaiwartya, O. A Novel Charging Management and Security Framework for the Electric Vehicle (EV) Ecosystem. World Electr. Veh. J. 2024, 15, 392. [Google Scholar] [CrossRef]
- Guillemin, S.; Choulet, R.; Guyot, G.; Hing, S. Electrical Vehicle Smart Charging Using the Open Charge Point Interface (OCPI) Protocol. Energies 2024, 17, 2873. [Google Scholar] [CrossRef]
- Agbedanu, P.R.; Yang, S.J.; Musabe, R.; Gatare, I.; Rwigema, J. A Scalable Approach to Internet of Things and Industrial Internet of Things Security: Evaluating Adaptive Self-Adjusting Memory K-Nearest Neighbor for Zero-Day Attack Detection. Sensors 2025, 25, 216. [Google Scholar] [CrossRef] [PubMed]
- Abdusalomov, A.; Kilichev, D.; Nasimov, R.; Rakhmatullayev, I.; Im Cho, Y. Optimizing Smart Home Intrusion Detection with Harmony-Enhanced Extra Trees. IEEE Access 2024, 12, 117761–117786. [Google Scholar] [CrossRef]
- Erniyazov, S.; Kim, Y.M.; Jaleel, M.A.; Lim, C.G. Comprehensive Analysis and Improved Techniques for Anomaly Detection in Time Series Data with Autoencoder Models. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1861–1867. [Google Scholar] [CrossRef]
- Adewole, K.S.; Salau-Ibrahim, T.T.; Imoize, A.L.; Oladipo, I.D.; AbdulRaheem, M.; Awotunde, J.B.; Balogun, A.O.; Isiaka, R.M.; Aro, T.O. Empirical Analysis of Data Streaming and Batch Learning Models for Network Intrusion Detection. Electronics 2022, 11, 3109. [Google Scholar] [CrossRef]
- Kilichev, D.; Kim, W. Hyperparameter Optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO. Mathematics 2023, 11, 3724. [Google Scholar] [CrossRef]
- Malik, F.; Waqas Khan, Q.; Rizwan, A.; Alnashwan, R.; Atteia, G. A Machine Learning-Based Framework with Enhanced Feature Selection and Resampling for Improved Intrusion Detection. Mathematics 2024, 12, 1799. [Google Scholar] [CrossRef]
- Althiyabi, T.; Ahmad, I.; Alassafi, M.O. Enhancing IoT Security: A Few-Shot Learning Approach for Intrusion Detection. Mathematics 2024, 12, 1055. [Google Scholar] [CrossRef]
- Rakhimovich, A.M.; Kadirbergenovich, K.K.; Ishkobilovich, Z.M.; Kadirbergenovich, K.J. Logistic Regression with Multi-Connected Weights. J. Comput. Sci. 2024, 20, 1051–1058. [Google Scholar] [CrossRef]
- Ahmad, I.; Wan, Z.; Ahmad, A.; Ullah, S.S. A Hybrid Optimization Model for Efficient Detection and Classification of Malware in the Internet of Things. Mathematics 2024, 12, 1437. [Google Scholar] [CrossRef]
- Rakhimovich, M.A.; Kadirbergenovich, K.K.; Rakhmovich, O.U. Application of a Piecewise Linear Decision Tree Algorithm to Detect Phishing URLs in IoT Devices. In 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022); Aliev, R.A., Yusupbekov, N.R., Kacprzyk, J., Pedrycz, W., Babanli, M.B., Sadikoglu, F.M., Turabdjanov, S.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 47–54. [Google Scholar]
- Bifet, A.; Gavaldà, R. Learning from Time-Changing Data with Adaptive Windowing. In Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), Minneapolis, MI, USA, 26–28 April 2007; pp. 443–448. [Google Scholar] [CrossRef]
- Alalwany, E.; Alsharif, B.; Alotaibi, Y.; Alfahaid, A.; Mahgoub, I.; Ilyas, M. Stacking Ensemble Deep Learning for Real-Time Intrusion Detection in IoMT Environments. Sensors 2025, 25, 624. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Z.; Ren, Z.; Wang, H.; Zhang, C.; Wan, Q.; Sun, D. Design of an Automatic Classification System for Educational Reform Documents Based on Naive Bayes Algorithm. Mathematics 2024, 12, 1127. [Google Scholar] [CrossRef]
- Basnet, M.; Hasan Ali, M. Exploring cybersecurity issues in 5G enabled electric vehicle charging station with deep learning. IET Gener. Transm. Distrib. 2021, 15, 3435–3449. [Google Scholar] [CrossRef]
- Suriya, N.; Vijay Shankar, S. A novel ensembling of deep learning based intrusion detection system and scroll chaotic countermeasures for electric vehicle charging system. J. Intell. Fuzzy Syst. 2022, 43, 4789–4801. [Google Scholar] [CrossRef]
- Islam, S.; Badsha, S.; Sengupta, S.; Khalil, I.; Atiquzzaman, M. An Intelligent Privacy Preservation Scheme for EV Charging Infrastructure. IEEE Trans. Ind. Inform. 2023, 19, 1238–1247. [Google Scholar] [CrossRef]
- ElKashlan, M.; Aslan, H.; Said Elsayed, M.; Jurcut, A.D.; Azer, M.A. Intrusion Detection for Electric Vehicle Charging Systems (EVCS). Algorithms 2023, 16, 75. [Google Scholar] [CrossRef]
- ElKashlan, M.; Elsayed, M.S.; Jurcut, A.D.; Azer, M. A Machine Learning-Based Intrusion Detection System for IoT Electric Vehicle Charging Stations (EVCSs). Electronics 2023, 12, 1044. [Google Scholar] [CrossRef]
- Mekkaoui, K. Enhancing V2G Network Security: A Novel Cockroach Behavior-Based Machine Learning Classifier to Mitigate MitM and DoS Attacks. Adv. Electr. Comput. Eng. 2024, 24, 31–40. [Google Scholar] [CrossRef]
- Paul, R.; Selvan, M.P. A hybrid deep learning-based intrusion detection system for EV and UAV charging stations. Automatika 2024, 65, 1558–1578. [Google Scholar] [CrossRef]
- Kilichev, D.; Turimov, D.; Kim, W. Next–Generation Intrusion Detection for IoT EVCS: Integrating CNN, LSTM, and GRU Models. Mathematics 2024, 12, 571. [Google Scholar] [CrossRef]
- Gul, M. Khan, O.; Elghitani, F.; Youssef, A.; Salama, M.; El-Saadany, E.F. Real-Time Congestion-Aware Charging Station Assignment Model for EVs. IEEE Internet Things J. 2024, 11, 11723–11736. [Google Scholar] [CrossRef]
- Verma, A.; Saha, R.; Kumar, G.; Conti, M. PETRAK: A solution against DDoS attacks in vehicular networks. Comput. Commun. 2024, 221, 142–154. [Google Scholar] [CrossRef]
- Yaldız, A.; Gökçek, T.; Ateş, Y.; Erdinç, O. Overview and advancement of power system topology addressing pre- and post-event strategies under abnormal operating conditions. Sustain. Energy Grids Netw. 2024, 40, 101562. [Google Scholar] [CrossRef]
- Togbe, M.U.; Chabchoub, Y.; Boly, A.; Barry, M.; Chiky, R.; Bahri, M. Anomalies Detection Using Isolation in Concept-Drifting Data Streams. Computers 2021, 10, 13. [Google Scholar] [CrossRef]
- Shern, S.J.; Sarker, M.T.; Ramasamy, G.; Thiagarajah, S.P.; Al Farid, F.; Suganthi, S.T. Artificial Intelligence-Based Electric Vehicle Smart Charging System in Malaysia. World Electr. Veh. J. 2024, 15, 440. [Google Scholar] [CrossRef]
- Aziz, A.; Osamy, W.; Alfawaz, O.; Khedr, A.M. EDCCS: Effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs. Wirel. Netw. 2022, 28, 2375–2391. [Google Scholar] [CrossRef]
- Zhang, W.; Bifet, A.; Zhang, X.; Weiss, J.C.; Nejdl, W. FARF: A Fair and Adaptive Random Forests Classifier. In Advances in Knowledge Discovery and Data Mining; Karlapalem, K., Cheng, H., Ramakrishnan, N., Agrawal, R.K., Reddy, P.K., Srivastava, J., Chakraborty, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 245–256. [Google Scholar]
- Charusheela, C.; Lalitha, L. A comparative analysis of algorithm for detecting concept-drift. AIP Conf. Proc. 2024, 2742, 020090. [Google Scholar] [CrossRef]
- Lee, H.; Shin, M. TestShark: A Passive Conformance Testing System for ISO 15118 Using Wireshark. Energies 2024, 17, 5833. [Google Scholar] [CrossRef]
- Shen, C.; Liu, B.; Shao, C.; Yang, X.; Xu, S.; Zhu, C.; Yu, H. Multi-Label Learning with Distribution Matching Ensemble: An Adaptive and Just-In-Time Weighted Ensemble Learning Algorithm for Classifying a Nonstationary Online Multi-Label Data Stream. Symmetry 2025, 17, 182. [Google Scholar] [CrossRef]
- Zhao, X.; Leng, X.; Wang, L.; Wang, N. Research on Fine-Tuning Optimization Strategies for Large Language Models in Tabular Data Processing. Biomimetics 2024, 9, 708. [Google Scholar] [CrossRef]
- Buedi, E.D.; Ghorbani, A.A.; Dadkhah, S.; Ferreira, R.L. Enhancing EV Charging Station Security Using a Multi-dimensional Dataset: CICEVSE2024. In Proceedings of the Data and Applications Security and Privacy XXXVIII, San Jose, CA, USA, 15–17 July 2024; Ferrara, A.L., Krishnan, R., Eds.; Springer: Cham, Switzerland, 2024; pp. 171–190. [Google Scholar] [CrossRef]
- Montiel, J.; Halford, M.; Mastelini, S.M.; Bolmier, G.; Sourty, R.; Vaysse, R.; Zouitine, A.; Gomes, H.M.; Read, J.; Abdessalem, T.; et al. River: Machine learning for streaming data in Python. J. Mach. Learn. Res. 2021, 22, 1–8. [Google Scholar]
- Gomes, H.M.; Bifet, A.; Read, J.; Barddal, J.P.; Enembreck, F.; Pfharinger, B.; Holmes, G.; Abdessalem, T. Adaptive random forests for evolving data stream classification. Mach. Learn. 2017, 106, 1469–1495. [Google Scholar] [CrossRef]
- Bozömeroğlu, H.; Gürkaş-Aydın, Z. Elektrikli Araç Şarj İstasyonlarının Siber Güvenliği: CIC-EVSE 2024 Veri Kümesi ile IDS Sistemlerinin Performans Analizi. In Proceedings of the 2024 17th International Conference on Information Security and Cryptology (ISCTürkiye), Ankara, Turkiye, 16–17 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Purohit, S.; Govindarasu, M. FL-EVCS: Federated Learning based Anomaly Detection for EV Charging Ecosystem. In Proceedings of the 2024 33rd International Conference on Computer Communications and Networks (ICCCN), Kailua-Kona, HI, USA, 29–31 July 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chayan, M.M.H.; Mehrin, K.; Sultana, A.; Hamed, M.M. Explainable Deep Learning for Cyber Attack Detection in Electric Vehicle Charging Stations. In Proceedings of the 11th International Conference on Networking, Systems, and Security, Khulna Karak, Bangladesh, 19–21 December 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Benfarhat, I.; Goh, V.T.; Lim Siow, C.; Sheraz, M.; Chee Chuah, T. Temporal Convolutional Network Approach to Secure Open Charge Point Protocol (OCPP) in Electric Vehicle Charging. IEEE Access 2025, 13, 15272–15289. [Google Scholar] [CrossRef]
- Rai, H.M.; Yoo, J.; Agarwal, S. The Improved Network Intrusion Detection Techniques Using the Feature Engineering Approach with Boosting Classifiers. Mathematics 2024, 12, 3909. [Google Scholar] [CrossRef]
- Binbusayyis, A. Reinforcing Network Security: Network Attack Detection Using Random Grove Blend in Weighted MLP Layers. Mathematics 2024, 12, 1720. [Google Scholar] [CrossRef]
- Ying, X.; Pan, M.; Chen, X.; Zhou, Y.; Liu, J.; Li, D.; Guo, B.; Zhu, Z. Research on Virus Propagation Network Intrusion Detection Based on Graph Neural Network. Mathematics 2024, 12, 1534. [Google Scholar] [CrossRef]
- AlGhamdi, R. Design of Network Intrusion Detection System Using Lion Optimization-Based Feature Selection with Deep Learning Model. Mathematics 2023, 11, 4607. [Google Scholar] [CrossRef]
Paper | Dataset | Communication Protocols | Learning Method | Methodology | Drift Handling | Strengths |
---|---|---|---|---|---|---|
[27] | Simulated | None | Offline | Stacked LSTM | Not addressed | Robust sequential data modeling |
[28] | Simulated | None | Offline | GRU optimized via Bat Algorithm | Not addressed | Integration of detection and encryption |
[29] | UNSW-NB-15 | None | Federated | Federated Learning + Reinforcement Learning | Implicit through federated updates | Privacy-preserving with real-time adaptation |
[30] | IoT-23 | None | Offline | Naïve Bayes, Decision Tree, Random Forest | Not addressed | Simple, interpretable models |
[31] | IoT-23 | None | Offline | Attribute Selection + Filtered Classifier | Not addressed | High accuracy, simple architecture |
[32] | Simulated | ISO15118 (V2G) | Offline | Cockroach-inspired Bayesian classifier | Implicit through adaptive thresholding | Bio-inspired, adaptive to noise |
[33] | UAV, CICEV2023 | None | Offline | Squirrel Search + ADRNN | Not addressed | Hybrid optimization for cost and detection |
[34] | Edge-IIoTset | None | Offline | CNN-LSTM-GRU Ensemble | Not addressed | Captures both spatial and temporal patterns |
[35] | - | None | Statistical Modeling | Statistical detection of FDIAs | Adaptive thresholds | Real-time anomaly detection |
[36] | Simulated | None | Offline | PETRAK: Bayesian Network IDS | Implicit through alarming system | Multi-layer detection and prevention |
[37] | Simulated | None | Offline | 1D-CNN with graph-based topology analysis | Not addressed | Integration of attack detection with restoration |
Proposed Model | CICEVSE2024 | OCPP, ISO 15118 (V2G) | Online | ARF Classifier + Drift Detection | Explicit through ADWIN | Real-time adaptability to drifts, scalable |
Model | Concept Drift Handling | Ensemble Capability | Computational Efficiency | Robustness to Noise |
---|---|---|---|---|
Adaptive Random Forest | Explicit (ADWIN) | Yes | Moderate | High (via weighted voting) |
Hoeffding Tree | Partial | No | High | Low |
Hoeffding Adaptive Tree | Explicit (ADWIN) | No | High | Moderate |
Online Bagging | Partial | Yes | High | Moderate |
Online Boosting | Partial | Yes | Moderate | Low |
Naïve Bayes | No | No | Very High | Low |
k-Nearest Neighbors | No | No | Low | Moderate |
Stochastic Gradient Descent | No | No | Very High | Low |
Class | Attack | Count |
---|---|---|
Attack | SYN_Flood | 259,481 |
SynonymousIP_Flood | 256,730 | |
TCP_Flood | 256,315 | |
PSHACK_Flood | 195,952 | |
SYN_Stealth_Scan | 77,278 | |
TCP_Port_Scan | 64,455 | |
Service_Version_Detection | 46,334 | |
Vulnerability_Scan | 38,023 | |
UDP_Flood | 32,475 | |
OS_Fingerprinting | 26,080 | |
Aggressive_Scan | 21,762 | |
Slowloris_Scan | 2340 | |
ICMP_Flood | 32 | |
ICMP_Fragmentation | 28 | |
Benign | - | 82 |
Metric | Time (s) |
---|---|
Total Execution Time | 4706.81 |
Time Spent on Drift Detection | 3.98 |
Time Spent Updating Metrics | 6.59 |
Drift Instance | Detection Time | |
---|---|---|
1 | 18,047 | 15:05:32.005376 |
2 | 60,511 | 15:06:42.714280 |
3 | 84,063 | 15:07:22.446074 |
4 | 145,343 | 15:12:21.345191 |
5 | 280,255 | 15:24:32.483553 |
6 | 305,983 | 15:26:49.603784 |
7 | 362,783 | 15:31:35.623492 |
8 | 553,983 | 15:44:19.851003 |
9 | 699,103 | 15:52:59.472534 |
10 | 885,567 | 16:01:51.834055 |
11 | 1,089,663 | 16:11:59.815616 |
12 | 1,213,183 | 16:19:27.071908 |
Drift Instance | Detection Time | |
---|---|---|
1 | 383 | 11:11:31.096061 |
2 | 2239 | 11:11:58.852554 |
3 | 114,591 | 11:28:07.779641 |
4 | 156,895 | 11:34:49.177871 |
5 | 220,063 | 11:44:03.959451 |
6 | 247,487 | 11:48:21.912423 |
7 | 300,479 | 11:56:44.867078 |
8 | 510,079 | 12:04:08.869180 |
9 | 613,439 | 12:07:35.671205 |
10 | 897,119 | 12:16:59.907216 |
11 | 1,270,815 | 12:29:36.363396 |
Metric | Time (s) |
---|---|
Total Execution Time | 4703.63 |
Time Spent on Drift Detection | 4.56 |
Time Spent Updating Metrics | 4.88 |
Authors | Year | Dataset | Model | Learning Method | Class | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|---|
Buedi et al. [46] | 2024 | CICEVSE2024: Network Traffic | Random Forest | offline | 15 | 0.9374 | 0.9694 | 0.9374 | 0.9478 |
Support Vector Machine | offline | 15 | 0.9413 | 0.9151 | 0.9413 | 0.9280 | |||
Bozömeroğlu et al. [49] | 2024 | CICEVSE2024: Network Traffic | Decision Tree | offline | 13 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Purohit et al. [50] | 2024 | CICEVSE2024: Network Traffic | Federated Learning | federated | 2 | 0.9697 | - | - | 0.9740 |
Rahman et al. [51] | 2025 | CICEVSE2024: Host Data | Deep Learning | offline | 3 | 0.9754 | 0.9757 | 0.9754 | 0.9754 |
Benfarhat et al. [52] | 2025 | CICEVSE2024: Host Data | Temporal Convolutional Network | offline | 2 | 1.0 | - | - | - |
5 | 1.0 | - | - | - | |||||
17 | 0.9300 | - | - | - | |||||
Our Proposed Model | 2025 |
CICEVSE2024: Network Traffic | Adaptive Random Forest | online | 2 | 0.9913 | 0.9999 | 0.9914 | 0.9956 |
15 | 0.9840 | 0.9840 | 0.9840 | 0.9831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhmudov, F.; Kilichev, D.; Giyosov, U.; Akhmedov, F. Online Machine Learning for Intrusion Detection in Electric Vehicle Charging Systems. Mathematics 2025, 13, 712. https://doi.org/10.3390/math13050712
Makhmudov F, Kilichev D, Giyosov U, Akhmedov F. Online Machine Learning for Intrusion Detection in Electric Vehicle Charging Systems. Mathematics. 2025; 13(5):712. https://doi.org/10.3390/math13050712
Chicago/Turabian StyleMakhmudov, Fazliddin, Dusmurod Kilichev, Ulugbek Giyosov, and Farkhod Akhmedov. 2025. "Online Machine Learning for Intrusion Detection in Electric Vehicle Charging Systems" Mathematics 13, no. 5: 712. https://doi.org/10.3390/math13050712
APA StyleMakhmudov, F., Kilichev, D., Giyosov, U., & Akhmedov, F. (2025). Online Machine Learning for Intrusion Detection in Electric Vehicle Charging Systems. Mathematics, 13(5), 712. https://doi.org/10.3390/math13050712