Borel–Cantelli Lemma for Capacities
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- (a)
- Monotonicity: if , then .
- (b)
- Constant preserving: .
- (c)
- Translation invariance: .
- (d)
- Positive homogeneity: .
- (e)
- Lower–upper Choquet expectations:
- (f)
- Comonotonic additivity: if are comonotonic random variables, then
- (I)
- For any constant, , and any sequence, with
- (II)
- For any
- (III)
- For any constant
3. The Second Borel–Cantelli Lemma for Capacities
4. Independence Cases
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borel, E. Les probabilités dénombrables et leurs applications arith-métiq-ues. Rend. Circ. Mat. Palermo 1909, 27, 247–271. [Google Scholar] [CrossRef]
- Borel, E. Sur un probléme de probabilités relatif aux fractions continues. Math. Ann. 1912, 77, 578–587. [Google Scholar] [CrossRef]
- Cantelli, P. Sulla probabilitiá come limite della frequenza. Rend. Accad. Lincai Ser. 5 1917, 24, 39–45. [Google Scholar]
- Chandra, K. The Borel-Cantelli Lemma; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Barndorff-Nielsen, E. On the rate of growth of the partial maxima of a sequence of independent and identically distributed random variables. Math. Scand. 1961, 9, 383–394. [Google Scholar] [CrossRef]
- Martikainen, A.I.; Petrov, V.V. On the Borel–Cantelli lemma. Zap. Nauch. Semin. Leningr. Otd. Steklov Mat. Inst. 1990, 184, 200–207. (In Russian); English translation in: J. Math. Sci. 1994, 63, 540–544 [Google Scholar] [CrossRef]
- Balakrishnan, N.; Stepanov, A. A generalization of the Borel-Cantelli lemma. Math. Sci. 2010, 35, 61–62. [Google Scholar]
- Erdös, P.; Rényi, A. On Cantor’s series with convergent ∑1/qn. Ann. Univ. Sci. Budapest Eötvós. Sect. Math. 1959, 2, 93–109. [Google Scholar]
- Kochen, S.; Stone, C. A note on the Borel-Cantelli lemma. Ill. J. Math. 1964, 8, 248–251. [Google Scholar] [CrossRef]
- Petrov, V. A note on the Borel-Cantelli lemma. Stat. Probab. Lett. 2002, 58, 283–286. [Google Scholar] [CrossRef]
- Petrov, V. A generalization of the Borel-Cantelli lemma. Stat. Probab. Lett. 2004, 67, 233–239. [Google Scholar] [CrossRef]
- Yan, J. A simple proof of two generalized Borel-Cantelli lemmas. In Memorian Paul-Andre Meyer: Seminaire de Probabilitiés XXXIX; Lecture Notes in Mathematics No. 1874; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Xie, Y.Q. A bilateral inequality on nonnegative bounded random sequence. Stat. Probab. Lett. 2009, 79, 1577–1580. [Google Scholar] [CrossRef]
- Zong, G.; Chen, Z.; Lan, Y. Fubini-Like Theorem of Real-Valued Choquet Integrals for Set-Valued Mappings. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2016, 24, 387–403. [Google Scholar] [CrossRef]
- Huber, P. The use of Choquet capacities in statistics. Bull. Int. Stat. Inst. 1973, 45, 181–191. [Google Scholar]
- Denneberg, D. Non-Additive Measure and Integral; Kluwer: Alphen aan den Rijn, The Netherlands, 1994. [Google Scholar]
- Wang, Z.; Klir, G. Generalized Measure Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Peng, S. G-expectation, G-Brownian Motion and Related Stochastic Calculus of Ito type. In Proceedings of the 2005 Abel Symposium, Oslo, Norway, 29 July–4 August 2006. [Google Scholar]
- Peng, S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A Math. 2009, 52, 1391–1411. [Google Scholar] [CrossRef]
- Peng, S. Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Torra, V.; Narukawa, Y.; Sugeno, M. Non-Additive Measures: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Billingsley, P. Probability and Measure, 3rd ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Maccheroni, F.; Marinacci, M. A strong law of large numbers for capacities. Ann. Probab. 2005, 33, 1171–1178. [Google Scholar] [CrossRef]
- Puhalskii, A. Large Deviations and Idempotent Probability; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Dhaene, J.; Denuit, M.; Goovaerts, M.J.; Kaas, R.; Vyncke, D. The concept of comonotonicity in actuarial science and finance: Theory. Insur. Math. Econ. 2002, 31, 3–33. [Google Scholar] [CrossRef]
- Ghirardato, P. On independence for non-additive measures with a Fubini theorem. J. Econom. Theory 1997, 73, 261–291. [Google Scholar] [CrossRef]
- Chateauneuf, A.; Lefort, J. Some Fubini theorems on product σ-algebras for non-additive measures. Int. J. Approx. Reason. 2008, 48, 686–696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.; Zong, G. Borel–Cantelli Lemma for Capacities. Mathematics 2025, 13, 728. https://doi.org/10.3390/math13050728
Kao C, Zong G. Borel–Cantelli Lemma for Capacities. Mathematics. 2025; 13(5):728. https://doi.org/10.3390/math13050728
Chicago/Turabian StyleKao, Chunyu, and Gaofeng Zong. 2025. "Borel–Cantelli Lemma for Capacities" Mathematics 13, no. 5: 728. https://doi.org/10.3390/math13050728
APA StyleKao, C., & Zong, G. (2025). Borel–Cantelli Lemma for Capacities. Mathematics, 13(5), 728. https://doi.org/10.3390/math13050728