Distributions of Outputs Given Subsets of Inputs and Dependent Generalized Sensitivity Indices
Abstract
:1. Introduction
General Notation
2. Dependency Functions of Non-Independent Random Variables
2.1. Distribution-Based and Copula-Based Expressions of Dependency Models
2.2. Empirical and Computational Dependency Models
3. Equivalent Representations of Functional Outputs
Algorithm 1: Construction of the sets and for all . |
Discussions About High-Dimensional Cases
4. Dependent Multivariate Sensitivity Analysis
- (i)
- For the first-type dGSIs, the first-order and total indices are given by
- (ii)
- The second-type dGSIs are defined as follows:
- (iii)
- The third-type dGSIs are given as follows:
4.1. Properties of Dependent Generalized Sensitivity Indices
4.2. Case of the Multivariate Response Models
- (i)
- The first-type dGSIs for a given multivariate response function are
- (ii)
- The second-type dGSIs are defined as follows:
5. Estimators of Dependent Generalized Sensitivity Indices
- (i)
- the consistent estimators of the first-type dGSIs are given as follows:when , where denotes the convergence in probability.
- (ii)
- The estimators of the second-type dGSIs are given as follows:
- (iii)
- The estimators of the third-type dGSIs are given as follows:
6. Analytical and Numerical Results
6.1. Linear Function Without Explicit Interaction (, )
6.2. Functional Outputs: Dynamic Model (, )
6.3. Sobol’s g-Function (, )
- are independent variables, that is, ;
- and have a Gaussian copula with as the correlation values, and ;
- , where with .
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Lemma 1
Appendix B. Proof of Lemma 2
Appendix C. Proof of Lemma 3
Appendix D. Proof of Lemma 4
Appendix E. Proof of Theorem 1
Appendix F. Proof of Proposition 2
Appendix G. Proof of Theorem 2
Appendix H. Proof of Corollary 1
Appendix I. Proof of Theorem 3
Appendix J. Equivalent Representations of the Function Used in Section 6.3
References
- Sobol, I.M. Sensitivity analysis for non-linear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Lamboni, M. Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices. Reliab. Eng. Syst. Saf. 2019, 187, 67–92. [Google Scholar] [CrossRef]
- Lamboni, M.; Monod, H.; Makowski, D. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab. Eng. Syst. Saf. 2011, 96, 450–459. [Google Scholar] [CrossRef]
- Gamboa, F.; Janon, A.; Klein, T.; Lagnoux, A. Sensitivity indices for multivariate outputs. Comptes Rendus Math. 2013, 351, 307–310. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Z.; Xu, L. Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis. Reliab. Eng. Syst. Saf. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Lamboni, M. Derivative-based generalized sensitivity indices and Sobol’ indices. Math. Comput. Simul. 2020, 170, 236–256. [Google Scholar] [CrossRef]
- Perrin, T.; Roustant, O.; Rohmer, J.; Alata, O.; Naulin, J.; Idier, D.; Pedreros, R.; Moncoulon, D.; Tinard, P. Functional principal component analysis for global sensitivity analysis of model with spatial output. Reliab. Eng. Syst. Saf. 2021, 211, 107522. [Google Scholar] [CrossRef]
- Veiga, S.D.; Wahl, F.; Gamboa, F. Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs. Technometrics 2009, 51, 452–463. [Google Scholar] [CrossRef]
- Mara, T.A.; Tarantola, S. Variance-based sensitivity indices for models with dependent inputs. Reliab. Eng. Syst. Saf. 2012, 107, 115–121. [Google Scholar] [CrossRef]
- Kucherenko, S.; Tarantola, S.; Annoni, P. Estimation of global sensitivity indices for models with dependent variables. Comput. Phys. Commun. 2012, 183, 937–946. [Google Scholar] [CrossRef]
- Hao, W.; Zhenzhou, L.; Wei, P. Uncertainty importance measure for models with correlated normal variables. Reliab. Eng. Syst. Saf. 2013, 112, 48–58. [Google Scholar] [CrossRef]
- Chastaing, G.; Gamboa, F.; Prieur, C. Generalized Hoeffding-Sobol’ decomposition for dependent variables—Applications to sensitivity analysis. Electron. J. Stat. 2012, 6, 2420–2448. [Google Scholar] [CrossRef]
- Kucherenko, S.; Klymenko, O.; Shah, N. Sobol’ indices for problems defined in non-rectangular domains. Reliab. Eng. Syst. Saf. 2017, 167, 218–231. [Google Scholar] [CrossRef]
- Mara, T.A.; Tarantola, S.; Annoni, P. Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Environ. Model. Softw. 2015, 72, 173–183. [Google Scholar] [CrossRef]
- Tarantola, S.; Mara, T.A. Variance-based sensitivity indices of computer models with dependent inputs: The fourier amplitude sensitivity test. Int. J. Uncertain. Quantif. 2017, 7, 511–523. [Google Scholar] [CrossRef]
- Lamboni, M.; Kucherenko, S. Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables. Reliab. Eng. Syst. Saf. 2021, 212, 107519. [Google Scholar] [CrossRef]
- Lamboni, M. On exact distribution for multivariate weighted distributions and classification. Methodol. Comput. Appl. Probab. 2023, 25, 1–41. [Google Scholar] [CrossRef]
- Lamboni, M. Kernel-based Measures of Association Between Inputs and Outputs Using ANOVA. Sankhya A 2024, 86, 790–826. [Google Scholar] [CrossRef]
- Skorohod, A.V. On a representation of random variables. Theory Probab. Appl. 1976, 21, 645–648. [Google Scholar]
- Lamboni, M. Efficient dependency models: Simulating dependent random variables. Math. Comput. Simul. 2021, 200, 199–217. [Google Scholar] [CrossRef]
- Ferguson, T. Mathematical Statistics: A Decision Theoretic Approach; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Rschendorf, L. Stochastically ordered distributions and monotonicity of the oc-function of sequential probability ratio tests. Ser. Stat. 1981, 12, 327–338. [Google Scholar] [CrossRef]
- Rschendorf, L. Stochastic ordering of risks, influence of dependence and a.s. constructions. In Advances on Models, Characterizations and Applications; Balakrishnan, N., Bairamov, I.G., Gebizlioglu, O.L., Eds.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rschendorf, L. On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Stat. Plan. Inference 2009, 139, 3921–3927. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on a Multivariate Transformation. Ann. Math. Statist. 1952, 23, 470–472. [Google Scholar] [CrossRef]
- Nelsen, R. An Introduction to Copulas; Springer: New York, NY, USA, 2006. [Google Scholar]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2015. [Google Scholar]
- Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Epanechnikov, V. Nonparametric estimation of a multidimensional probability density. Theory Probab. Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Silverman, B. Density Estimation for Statistics and Data Analysis; Chapman & Hall: New York, NY, USA, 1986. [Google Scholar]
- Clayton, D.G. A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence. Biometrika 1978, 65, 141–151. [Google Scholar] [CrossRef]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 1997. [Google Scholar]
- Smith, M.; Min, A.; Almeida, C.; Czado, C. Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence. J. Am. Stat. Assoc. 2010, 105, 1467–1479. [Google Scholar] [CrossRef]
- Durante, F.; Sempi, C. Principles of Copula Theory; CRC/Chapman & Hall: London, UK, 2015. [Google Scholar]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Truong, Y.K. Asymptotic Properties of Kernel Estimators Based on Local Medians. Ann. Stat. 1989, 17, 606–617. [Google Scholar] [CrossRef]
- Hendricks, W.; Koenker, R. Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity. J. Am. Stat. Assoc. 1992, 87, 58–68. [Google Scholar] [CrossRef]
- Koenker, R.; Ng, P.; Portnoy, S. Quantile smoothing splines. Biometrika 1994, 81, 673–680. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Bassett, R., Jr.; Koenker, R. An Empirical Quantile Function for Linear Models with iid Errors. J. Am. Stat. Assoc. 1982, 77, 407–415. [Google Scholar]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Takeuchi, I.; Le, Q.V.; Sears, T.D.; Smola, A.J. Nonparametric Quantile Estimation. J. Mach. Learn. Res. 2006, 7, 1231–1264. [Google Scholar]
- Lamboni, M. Uncertainty quantification: A minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices. Stat. Pap. 2018, 61, 1939–1970. [Google Scholar] [CrossRef]
- Lamboni, M. Weak derivative-based expansion of functions: ANOVA and some inequalities. Math. Comput. Simul. 2022, 194, 691–718. [Google Scholar] [CrossRef]
- Lamboni, M. Global sensitivity analysis: An efficient numerical method for approximating the total sensitivity index. Int. J. Uncertain. Quantif. 2016, 6, 1–17. [Google Scholar] [CrossRef]
- Owen, A.B. Sobol’ Indices and Shapley Value. Siam/Asa J. Uncertain. Quantif. 2014, 2, 245–251. [Google Scholar] [CrossRef]
- Sugiura, N. Multisample and multivariate nonparametric tests based on U-statistics and their asymptotic efficiencies. Osaka J. Math. 1965, 2, 385–426. [Google Scholar]
Main | Total | First-Order | Total | |||
X1 | 0.089 | 0.090 | X1:X2 | 0.321 | 0.372 | |
X2 | 0.241 | 0.294 | X1:X3 | 0.321 | 0.372 | |
X3 | 0.231 | 0.282 | X1:X9 | 0.192 | 0.216 | |
X4 | 0.093 | 0.093 | X1:X10 | 0.193 | 0.217 | |
X5 | 0.093 | 0.093 | X2:X3 | 0.298 | 0.299 | |
X6 | 0.093 | 0.093 | X2:X9 | 0.349 | 0.426 | |
X7 | 0.093 | 0.093 | X2:X10 | 0.348 | 0.425 | |
X8 | 0.093 | 0.093 | X3:X9 | 0.334 | 0.407 | |
X9 | 0.107 | 0.131 | X3:X10 | 0.335 | 0.409 | |
X10 | 0.108 | 0.132 | X9:X10 | 0.185 | 0.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamboni, M. Distributions of Outputs Given Subsets of Inputs and Dependent Generalized Sensitivity Indices. Mathematics 2025, 13, 766. https://doi.org/10.3390/math13050766
Lamboni M. Distributions of Outputs Given Subsets of Inputs and Dependent Generalized Sensitivity Indices. Mathematics. 2025; 13(5):766. https://doi.org/10.3390/math13050766
Chicago/Turabian StyleLamboni, Matieyendou. 2025. "Distributions of Outputs Given Subsets of Inputs and Dependent Generalized Sensitivity Indices" Mathematics 13, no. 5: 766. https://doi.org/10.3390/math13050766
APA StyleLamboni, M. (2025). Distributions of Outputs Given Subsets of Inputs and Dependent Generalized Sensitivity Indices. Mathematics, 13(5), 766. https://doi.org/10.3390/math13050766