A Review of Link Prediction Algorithms in Dynamic Networks
Abstract
:1. Introduction
2. Preliminary Knowledge
2.1. Representation of Dynamic Network Data
2.2. Description of Dynamic Network Link Prediction
- Regular Sampling. As mentioned before, a dynamic graph consists of sequential snapshots. If the interval between successive shots is manually fixed, this process would be called regular sampling. In the case of multiple graph sequences, the time interval is usually set to the minimum duration of an interaction within the system. However, it could increase complexity [14].
- Irregular Sampling. Rather than manually setting the interval, the modeling process could be based on new interaction, which is irregular. Continuous-time data sampling can capture more precise network features for prediction, which helps improve prediction accuracy.
2.3. Common Datasets for Dynamic Network Link Prediction Research
2.4. Evaluation Metrics
3. Unsupervised Learning Methods for Dynamic Network Link Prediction
3.1. Random Walk-Based Methods
3.2. Matrix Calculation-Based Methods
4. Supervised Learning Methods for Dynamic Network Link Prediction
4.1. Traditional Machine Learning
4.2. Deep Learning Models
5. Applications
5.1. Traditional Applications
5.2. Security Applications
5.3. Other Interdisciplinary Applications
6. Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvarez-Rodriguez, U.; Battiston, F.; de Arruda, G.F.; Moreno, Y.; Perc, M.; Latora, V. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 2021, 5, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zhang, X.; Leskovec, J. Predicting dynamic embedding trajectory in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1269–1278. [Google Scholar]
- Pandey, S.D.; Ranadive, A.; Samanta, S.; Sarkar, B. Bipolar-valued fuzzy social network and centrality measures. Discret. Dyn. Nat. Soc. 2022, 2022, 9713575. [Google Scholar] [CrossRef]
- Kazemi, S.M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P. Representation learning for dynamic graphs: A survey. Mach. Learn. Res. 2020, 21, 1–73. [Google Scholar]
- Skarding, J.; Gabrys, B.; Musial, K. Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access 2021, 9, 79143–79168. [Google Scholar] [CrossRef]
- Chen, H.; Li, J. Exploiting structural and temporal evolution in dynamic link prediction. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018. [Google Scholar]
- Chen, J.; Lin, X.; Jia, C.; Li, Y.; Wu, Y.; Zheng, H.; Liu, Y. Generative dynamic link prediction. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 123111. [Google Scholar] [CrossRef]
- Yu, W.; Cheng, W.; Charu, C.A.; Chen, H.; Wang, W. Link prediction with spatial and temporal consistency in dynamic networks. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017. [Google Scholar]
- Yao, L.; Wang, L.; Pan, L.; Yao, K. Link prediction based on common-neighbors for dynamic social network. Procedia Comput. Sci. 2016, 83, 82–89. [Google Scholar] [CrossRef]
- Zhou, M.; Cai, W.; Hu, Z.; Qian, Z. Dynamic Network Embedding and Its Temporal Link Prediction Via Constructing Community Adaptive Temporal Walking. Knowl. Inf. Syst. 2025, 1–26. [Google Scholar] [CrossRef]
- Chai, L.; Tu, L.; Yu, X.; Wang, X.; Chen, J. Link prediction and its optimization based on low-rank representation of network structures. Expert Syst. Appl. 2023, 219, 119680. [Google Scholar] [CrossRef]
- Pan, Z.; Cai, F.; Liu, X.; Chen, H. Distance-Aware Learning for Inductive Link Prediction on Temporal Networks. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Lü, L. Link prediction in complex networks. J. Univ. Electron. Sci. Technol. China 2010, 39, 651–661. [Google Scholar]
- Qin, M.; Yeung, D.Y. Temporal link prediction: A unified framework, taxonomy, and review. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Yi, L.; Peng, J.; Zheng, Y.; Mo, F.; Wei, Z.; Ye, Y.; Yue, Z.; Huang, Z. TGB-Seq Benchmark: Challenging Temporal GNNs with Complex Sequential Dynamics. arXiv 2025, arXiv:2502.02975. [Google Scholar]
- Paranjape, A.; Benson, A.R.; Leskovec, J. Motifs in temporal networks. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM), Cambridge, UK, 6–10 February 2017; pp. 601–610. [Google Scholar]
- Kumar, S.; Spezzano, F.; Subrahmanian, V.S.; Faloutsos, C. Edge weight prediction in weighted signed networks. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 221–230. [Google Scholar]
- Kumar, S.; Hamilton, W.L.; Leskovec, J.; Jurafsky, D. Community interaction and conflict on the web. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 933–943. [Google Scholar]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Lü, L.; Jin, C.H.; Zhou, T. Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 2009, 80, 046122. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Q.; Guo, J.; Chen, J. A survey on link prediction algorithms for signed networks. Comput. Sci. 2020, 47, 21–30. [Google Scholar] [CrossRef]
- Bryan, P.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Zhang, M.; Xu, B.; Li, W. Dynamic network link prediction based on random walking and time aggregation. Int. J. Mach. Learn. Cybern. 2023, 14, 2867–2875. [Google Scholar] [CrossRef]
- Nguyen; Giang, H.; Lee, J.B.; Rossi, R.A.; Ahmed, N.K.; Koh, E.; Kim, S. Dynamic network embeddings: From random walks to temporal random walks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018. [Google Scholar]
- Wang, Y.; Chang, Y.Y.; Liu, Y.; Leskovec, J.; Li, P. Inductive Representation Learning in Temporal Networks Via Causal Anonymous Walks. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Ahmed; Mohamed, N.; Chen, L.; Wang, Y.; Li, B.; Li, Y.; Liu, W. DeepEye: Link prediction in dynamic networks based on non-negative matrix factorization. Big Data Min. Anal. 2018, 1, 19–33. [Google Scholar] [CrossRef]
- Ma, X.; Sun, P.; Qin, G. Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit. 2017, 71, 361–374. [Google Scholar] [CrossRef]
- Lei, K.; Qin, M.; Bai, B.; Zhang, G. Adaptive multiple non-negative matrix factorization for temporal link prediction in dynamic networks. In Proceedings of the 2018 Workshop on Network Meets AI & ML, Budapest, Hungary, 24 August 2018. [Google Scholar]
- Ma, X.; Sun, P.; Wang, Y. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Phys. A Stat. Mech. Its Appl. 2018, 496, 121–136. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Y.; Wang, Y.; Ni, J. Link prediction in dynamic networks based on machine learning. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020. [Google Scholar]
- Singh; Kumar, A.; Lakshmanan, K. PILHNB: Popularity, interests, location used hidden Naive Bayesian-based model for link prediction in dynamic social networks. Neurocomputing 2021, 461, 562–576. [Google Scholar] [CrossRef]
- Wen, Y.; Wu, R.; Zhou, Z.; Zhang, S.; Yang, S.; Wallington, T.J.; Shen, W.; Tan, Q.; Deng, Y.; Wu, Y. A data-driven method of traffic emissions mapping with land use random forest models. Appl. Energy 2022, 305, 117916. [Google Scholar] [CrossRef]
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005. [Google Scholar]
- Trivedi, R.; Farajtabar, M.; Biswal, P.; Zha, H. Dyrep: Learning representations over dynamic graphs. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Xu, D.; Ruan, C.; Körpeoglu, E.; Kumar, S.; Achan, K. Inductive representation learning on temporal graphs. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Liao, Y.; Shu, J.; Liu, L. Dynamic Networks Link Prediction Based on Continuous Gated Recurrent Graph Convolution. Int. J. Mach. Learn. Cybern. 2024, 1–17. [Google Scholar] [CrossRef]
- Rossi, E.; Chamberlain, B.; Frasca, F.; Eynard, D.; Monti, F.; Bronstein, M. Temporal graph networks for deep learning on dynamic graphs. arXiv 2020, arXiv:2006.10637. [Google Scholar]
- Wang, X.; Lyu, D.; Li, M.; Xia, Y.; Yang, Q.; Wang, X.; Wang, X.; Cui, P.; Yang, Y.; Sun, B.; et al. APAN: Asynchronous propagation attention network for real-time temporal graph embedding. In Proceedings of the International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 2628–2638. [Google Scholar]
- Franco, S.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar]
- Gallicchio, C.; Micheli, A. Graph echo state networks. In Proceedings of the International Joint Conference on Neural Networks (ICJNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Guo, X.; Jing, X.; He, D.; Wu, H.; Pan, S.; Gong, M.; Wang, W. Temporal network embedding for link prediction via VAE joint attention mechanism. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7400–7413. [Google Scholar] [CrossRef]
- Phu, P.; Nguyen, L.T.T.; Nguyen, N.T.; Pedrycz, W.; Yun, U.; Vo, B. ComGCN: Community-driven graph convolutional network for link prediction in dynamic networks. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 5481–5493. [Google Scholar]
- Kumar, K.; Vantassel, J. GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. arXiv 2022, arXiv:2211.10228. [Google Scholar] [CrossRef]
- Zheng, T.; Feng, Z.; Zhang, T.; Hao, Y.; Song, M.; Wang, X.; Wang, X.; Zhao, J.; Chen, C. Transition propagation graph neural networks for temporal networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 4567–4579. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Xu, X.; Fu, C.; Zhang, D.; Zhang, Q.; Xuan, Q. E-LSTM-D: A deep learning framework for dynamic network link prediction. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3699–3712. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Wang, X. GC-LSTM: Graph convolution embedded LSTM for dynamic network link prediction. Appl. Intell. 2018, 52, 7513–7528. [Google Scholar] [CrossRef]
- Jin, G.; Liang, Y.; Fang, Y.; Shao, Z.; Huang, J.; Zhang, J.; Zheng, Y. Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey. IEEE Trans. Knowl. Data Eng. 2023, 36, 5388–5408. [Google Scholar] [CrossRef]
- Min, S.; Gao, Z.; Peng, J.; Wang, L.; Qin, K.; Fang, B. STGSN-A Spatial-Temporal Graph Neural Network framework for time-evolving social networks. Knowl.-Based Syst. 2021, 214, 106746. [Google Scholar] [CrossRef]
- Chang, X.; Liu, X.; Wen, J.; Li, S.; Fang, Y.; Song, L.; Qi, Y. Continuous-Time Dynamic Graph Learning Via Neural Interaction Processes. In Proceedings of the International Conference on Information and Knowledge Management, Virtual Event, 19–23 October 2020. [Google Scholar]
- Yu, L.; Sun, L.; Du, B.; Lv, W. Towards better dynamic graph learning: New architecture and unified library. Adv. Neural Inf. Process. Syst. 2023, 36, 67686–67700. [Google Scholar]
- Wen, Z.; Yuan, F. TREND: Temporal Event and Node Dynamics for Graph Representation Learning. Comput. Res. Repos. 2022, 1159–1169. [Google Scholar]
- Firouzkouhi, N.; Amini, A.; Bani-Mustafa, A.; Mehdizadeh, A.; Damrah, S.; Gholami, A.; Cheng, C.; Davvaz, B. Generalized Fuzzy Hypergraph for Link Prediction and Identification of Influencers in Dynamic Social Media Networks. Expert Syst. Appl. 2024, 238, 121736. [Google Scholar] [CrossRef]
- Dileo, M.; Zignani, M.; Gaito, S. Temporal Graph Learning for Dynamic Link Prediction with Text in Online Social Networks. Mach. Learn. 2024, 113, 2207–2226. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, C.; Bai, B.; Zhang, G.; Yeung, D.-Y. High-quality temporal link prediction for weighted dynamic graphs via inductive embedding aggregation. IEEE Trans. Knowl. Data Eng. 2023, 35, 9378–9393. [Google Scholar] [CrossRef]
- Wei, X.; Wang, W.; Zhang, C.; Ding, W.; Wang, B.; Qian, Y.; Han, Z.; Su, C. Neighbor-Enhanced Representation Learning for Link Prediction in Dynamic Heterogeneous Attributed Networks. ACM Trans. Knowl. Discov. Data 2024, 18, 1–25. [Google Scholar] [CrossRef]
- Ko, H.; Lee, S.; Park, Y.; Choi, A. A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics 2022, 11, 141. [Google Scholar] [CrossRef]
- Okura, S.; Tagami, Y.; Ono, S.; Tajima, A. Embedding-based news recommendation for millions of users. In Proceedings of the 23rd Knowledge Discovery and Data Mining (KDD), Halifax, NS, Canada, 13–17 August 2017; pp. 1933–1942. [Google Scholar]
- Yilmaz, E.A.; Balcisoy, S.; Bozkaya, B. A link prediction-based recommendation system using transactional data. Sci. Rep. 2023, 13, 6905. [Google Scholar] [CrossRef] [PubMed]
- Kaya, B. A hotel recommendation system based on customer location: A link prediction approach. Multimed. Tools Appl. 2020, 79, 1745–1758. [Google Scholar] [CrossRef]
- Talasu, N.; Jonnalagadda, A.; Pillai, S.S.A.; Rahul, J. A link prediction based approach for recommendation systems. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2059–2062. [Google Scholar]
- Kaya, B. Hotel recommendation system by bipartite networks and link prediction. J. Inf. Sci. 2020, 46, 53–63. [Google Scholar] [CrossRef]
- Beheshti, A.; Yakhchi, S.; Mousaeirad, S.; Ghafari, S.M.; Goluguri, S.R.; Edrisi, M.A. Towards Cognitive Recommender Systems. Algorithms 2020, 13, 176. [Google Scholar] [CrossRef]
- Mei, P.; Zhao, Y.H. Dynamic network link prediction with node representation learning from graph convolutional networks. Sci. Rep. 2024, 14, 538. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, L.; Philip, S.Y.; Li, H.; Ma, J.; Shen, Y. Target privacy preserving for social networks. In Proceedings of the 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1862–1865. [Google Scholar]
- Li, J.; Jiang, Z.; Ma, J. A survey on inverse link prediction methods. J. Inf. Secur. 2021, 6, 30–45. [Google Scholar]
- Liben-Nowell, D.; Kleinberg, J. The link prediction problem for social networks. In Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM), New Orleans, LA, USA, 3–8 November 2003; pp. 556–559. [Google Scholar]
- Daud, N.N.; Hamid, S.H.A.; Saadoon, M.; Sahran, F.; Anuar, N.B. Applications of link prediction in social networks: A review. J. Netw. Comput. Appl. 2020, 166, 102716. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Van den Hengel, A. Deep learning for anomaly detection: A review. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Kagan, D.; Elovichi, Y.; Fire, M. Generic anomalous vertices detection utilizing a link prediction algorithm. Soc. Netw. Anal. Min. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Teng, X.; Lin, Y.-R.; Wen, X. Anomaly detection in dynamic networks using multi-view time-series hypersphere learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017. [Google Scholar]
- Zhou, J.; Lu, J.A.; Lu, J. Adaptive Synchronization of an Uncertain Complex Dynamical Network. IEEE Trans. Autom. Control. 2024, 69, 3997–4004. [Google Scholar] [CrossRef]
- Xue, G.; Zhong, M.; Li, J.; Chen, J.; Zhai, C.; Kong, R. Dynamic network embedding survey. Neurocomputing 2022, 472, 212–223. [Google Scholar] [CrossRef]
- Van Zee, N.J.; Nicolay, R. Vitrimers: Permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 2020, 104, 101233. [Google Scholar] [CrossRef]
- Ni, X.; Zhao, Y.; Yao, Y. Dynamic Heterogeneous Link Prediction Based on Hierarchical Attention Model. In Proceedings of the International Conference on Cyber Security and Information Engineering (ICCSIE), Putrajaya, Malaysia, 22–24 September 2023; pp. 111–115. [Google Scholar]
- Ma, J.; Guo, R.; Li, J. Causal Inference on Graphs. In Machine Learning for Causal Inference; Springer International Publishing: Cham, Switzerland, 2023; pp. 53–78. [Google Scholar]
- Yao, L.; Chu, Z.; Li, S.; Li, Y.; Gao, J.; Zhang, A. A survey on causal inference. ACM Trans. Knowl. Discov. Data 2021, 15, 1–46. [Google Scholar] [CrossRef]
- Pan, Z.; Cai, F.; Chen, W.; Shao, T.; Guo, Y.; Chen, H. Inductive link prediction on temporal networks through causal inference. Inf. Sci. 2024, 681, 121202. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. CoRR 2017, 4768–4777. [Google Scholar]
- Andrea, R.; Firmani, D.; Merialdo, P.; Teofili, T. Explaining Link Prediction Systems Based on Knowledge Graph Embeddings. In Proceedings of the ACM-Sigmod International Conference on Management of Data, Philadelphia, PA, USA, 12–17 June 2022. [Google Scholar]
- Kainan, Z.; Tian, Z.; Cai, Z.; Seo, D. Link-privacy preserving graph embedding data publication with adversarial learning. Tsinghua Sci. Technol. 2021, 27, 244–256. [Google Scholar]
- Yu, S.; Zhao, M.; Fu, C.; Zheng, J.; Huang, H.; Shu, X.; Xuan, Q.; Chen, G. Target defense against link-prediction-based attacks via evolutionary perturbations. IEEE Trans. Knowl. Data Eng. 2019, 33, 754–767. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Lin, X.; Xuan, Q. Can adversarial network attack be defended? arXiv 2019, arXiv:1903.05994. [Google Scholar]
- Chen, J.; Shi, Z.; Wu, Y.; Xu, X.; Zheng, H. Link prediction adversarial attack. arXiv 2018, arXiv:1810.01110. [Google Scholar]
- Didem, D.; Namazi, M.; Ayday, E.; Clark, J. Privacy-preserving link prediction. In International Workshop on Data Privacy Management; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
Datasets | |V| | |E| | Time Span |
---|---|---|---|
CollegeMsg [16] | 1899 | 59,835 | 193 days |
Wiki-Talk [16] | 1,140,149 | 7,833,140 | 2320 days |
MOOC User Action [2] | 7047 | 411,749 | seconds |
Reddit-Hyperlink [17] | 55,863 | 858,490 | 40 months |
Bitcoin-OTC [18] | 5881 | 35,592 | seconds |
Email-Eu-core [16] | 986 | 332,334 | 803 days |
Algorithm Classification | Sample Type | Network Data | Literature Examples | Advantages | Disadvantages | |
---|---|---|---|---|---|---|
Unsupervised | Random walk | irregular | Dynamic univariant network | [23,24] |
| Not suitable for large-scale networks, in which it will lead to unstable prediction accuracy |
Dynamic multivariant network | [25] | |||||
Matrix processing | regular | Dynamic univariant network | [26,27,28,29] |
|
| |
Supervised | Traditional machine learning | regular | Dynamic univariant network | [30] |
|
|
Dynamic multivariant network | [31] | |||||
Deep learning model | regular | Dynamic univariant network | [43] |
|
| |
Dynamic multivariant network | [46,47,48,52,53] | |||||
irregular | Dynamic univariant network | [42,50] | ||||
Dynamic multivariant network | [49,51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Tang, M. A Review of Link Prediction Algorithms in Dynamic Networks. Mathematics 2025, 13, 807. https://doi.org/10.3390/math13050807
Sun M, Tang M. A Review of Link Prediction Algorithms in Dynamic Networks. Mathematics. 2025; 13(5):807. https://doi.org/10.3390/math13050807
Chicago/Turabian StyleSun, Mengdi, and Minghu Tang. 2025. "A Review of Link Prediction Algorithms in Dynamic Networks" Mathematics 13, no. 5: 807. https://doi.org/10.3390/math13050807
APA StyleSun, M., & Tang, M. (2025). A Review of Link Prediction Algorithms in Dynamic Networks. Mathematics, 13(5), 807. https://doi.org/10.3390/math13050807