A New Finite-Difference Method for Nonlinear Absolute Value Equations
Abstract
:1. Introduction
1.1. Problem Description Motivation
1.2. Contribution of This Paper
- The proposed algorithm avoids computing the gradients and Hessian matrices’ information to obtain the subproblem for solving the search direction. The finite-difference technique is only used for proposing the linear programming subproblem to obtain the search direction.
- Unconstrained nonsmooth optimization problems are established, and their optimal solutions are guaranteed to be absolute value equations. A new finite-difference parameter correction technique is used to ensure the monotonic descent of the objective function of unconstrained nonsmooth optimization problems.
- In contrast to general smooth optimization algorithms for solving absolute value equations, P0—matrix and P—matrix approximations for Problem (1) are not needed in this paper for the convergence of the algorithm.
2. The Linear Programming Subproblem
3. Algorithm
Algorithm 1: FDM |
Input: Given initial iteration , the constants , , and . Set . Main Steps: 1. Calculate the approximate gradient using (7). 2. If , then stop; is a solution of Problem (1). 3. If , then let . If , compute where , . Else, , and go to 4. 4. Let , compute where , . 5. If , then go to 3. 6. If , then ; go to 5. Else , go to 5. 7. Calculate Subproblem (8) and obtain the search direction , where and . 8. If , then let . Else, let and such that , }. Set , and go to 1. |
4. Convergence Analysis
5. Numerical Results
- SM [26]: The nonlinear absolute value equations can be restated as nonlinear complementarity problems and solved efficiently using smoothing regularizing techniques. SM is a smooth method for solving nonlinear complementarity problems. It uses a softmax function that approximates the nonsmooth parts of problems, in which the main idea is to approximate the complementarity condition via the limit
- IP [27]: The interior method introduced by Haddou, Migot and Omer in 2019 with the full Newton step for monotone linear complementarity problems. The specificity of the method was to compute the Newton step using a modified system similar to that introduced by Darvay in Stud Univ Babe-Bolyai Ser Inform 47:15-26, 2017. The method considered a general family of smooth concave functions in the Newton system instead of the square root. The method also possessed the best-known upper bound complexity.
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mangasarian, O.L. Absolute value programming. Comput. Optim. Appl. 2007, 36, 43–53. [Google Scholar] [CrossRef]
- Mangasarian, O.L. Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 1964, 12, 778–780. [Google Scholar] [CrossRef]
- Okeke, G.A.; Abbas, M. A solution of delay differential equations via PicardCKrasnoselskii hybrid iterative process. Arab. J. Math. 2017, 6, 21–29. [Google Scholar] [CrossRef]
- Rohn, J. A theorem of the alternatives for the equation Ax + B|x| = b. Linear Multilinear Algebra 2004, 52, 421–426. [Google Scholar] [CrossRef]
- Mangasarian, O.L. Absolute value equations via concave minimization. Optim. Lett. 2007, 1, 1–8. [Google Scholar] [CrossRef]
- Mangasarian, O.L. A generalized Newton method for absolute value equations. Optim. Lett. 2009, 3, 101–108. [Google Scholar] [CrossRef]
- Mangasarian, O.L. Linear complementarity as absolute value equation solution. Optim. Lett. 2014, 8, 1529–1534. [Google Scholar] [CrossRef]
- Prokopyev, O. On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 2009, 44, 363–372. [Google Scholar] [CrossRef]
- Lotfi, T.; Veiseh, H. A note on unique solvability of the absolute value equation. J. Lin. Top. Alg. 2013, 2, 77–81. [Google Scholar]
- Mangasarian, O.L.; Meyer, R.R. Absolute value equations. Linear Algebra Appl. 2006, 419, 359–367. [Google Scholar] [CrossRef]
- Rohn, J. On unique solvability of the absolute value equation. Optim. Lett. 2009, 3, 603–606. [Google Scholar] [CrossRef]
- Rohn, J.; Hooshyarbakhsh, V.; Farhadsefat, R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 2014, 8, 35–44. [Google Scholar] [CrossRef]
- Hu, S.L.; Huang, Z.H. A note on absolute value equations. Optim. Lett. 2010, 4, 417–424. [Google Scholar] [CrossRef]
- Abdallah, L.; Haddou, M.; Migot, T. Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 2018, 327, 196–207. [Google Scholar] [CrossRef]
- Caccetta, L.; Qu, B.; Zhou, G.L. A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 2011, 48, 45–58. [Google Scholar] [CrossRef]
- Li, C.X. A preconditioned AOR iterative method for the absolute value equations. Int. J. Comput. Methods 2017, 14, 1750016. [Google Scholar] [CrossRef]
- Yong, L. Particle swarm optimization for absolute value equations. J. Comput. Informat. Syst. 2010, 6, 2359–2366. [Google Scholar]
- Moosaei, H.; Ketabchi, S.; Noor, M.A.; Iqbald, J.; Hooshyarbakhshe, V. Some techniques for solving absolute value equations. Appl. Math. Comput. 2015, 268, 696–705. [Google Scholar] [CrossRef]
- Wu, S.; Li, C. A special shift splitting iteration method for absolute value equation. Aims Math. 2020, 5, 5171–5183. [Google Scholar] [CrossRef]
- Yong, L. Iteration method for absolute value equation and applications in two-point boundary value problem of linear differential equation. J. Interdiscip. Math. 2014, 18, 355–374. [Google Scholar] [CrossRef]
- Ketabchi, S.; Moosaei, H. Minimum norm solution to the absolute value equation in the convex case. J. Optim. Theory Appl. 2012, 154, 1080–1087. [Google Scholar] [CrossRef]
- Ketabchi, S.; Moosaei, H.; Fallahi, S. Optimal error correction of the absolute value equation using a genetic algorithm. Math. Comput. Model. 2013, 57, 2339–2342. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhu, W.H.; Wu, Y.K.; Jin, G.H. Application of multivariate bilinear neural network method to fractionalpartial differential equations. Results Phys. 2023, 47, 106341. [Google Scholar] [CrossRef]
- Taylor, J.M.; Pardo, D.; Muga, I. A deep fourier residual method for solving PDEs using neural networks. Comput. Methods Appl. Mech. Eng. 2023, 405, 115850. [Google Scholar] [CrossRef]
- Rohn, J. An algorithm for solving the absolute value equations. Electron. J. Linear Algebra 2009, 18, 589–599. [Google Scholar] [CrossRef]
- Nesterov, Y. Smooth minimization of nonsmooth functions. Math. Program. Ser. A 2005, 103, 127–152. [Google Scholar] [CrossRef]
- Haddou, M.; Migot, T.; Omer, J. A generalized direction in interior point method for monotone linear complementarity problems. Optim. Lett. 2019, 13, 35–53. [Google Scholar] [CrossRef]
- Alcantara, J.H.; Chen, J.-S. A new class of neural networks for NCPs using smooth perturbations of the natural residual function. J. Comput. Appl. Math. 2022, 407, 114092. [Google Scholar] [CrossRef]
- Fakharzadeh, A.J.; Shams, N.N. An Efficient Algorithm for Solving Absolute Value Equations. J. Math. Ext. 2021, 15, 1–23. [Google Scholar]
- Shindo, M.K.S. Extension of Newton and quasi-Newton methods to systems of PC1 equations. J. Oper. Res. Soc. Jpn. 1986, 29, 352–374. [Google Scholar]
- Dolan, E.D.; More, J.J. Benchmarking optimization software with performance profiles. Math. Profiles 2002, 91, 201–213. [Google Scholar] [CrossRef]
Example | Vector b | Error1 | Error2 | Error3 | Error4 |
---|---|---|---|---|---|
Example 1 | d = 10 | ||||
d = 50 | |||||
d = 100 | |||||
d = 200 | |||||
Example 4 | d = 100 | ||||
d = 500 | |||||
d = 1000 | |||||
d = 2000 | |||||
Example 5 | d = 100 | ||||
d = 500 | |||||
d = 1000 | |||||
d = 2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhang, Y.; Zhu, D. A New Finite-Difference Method for Nonlinear Absolute Value Equations. Mathematics 2025, 13, 862. https://doi.org/10.3390/math13050862
Wang P, Zhang Y, Zhu D. A New Finite-Difference Method for Nonlinear Absolute Value Equations. Mathematics. 2025; 13(5):862. https://doi.org/10.3390/math13050862
Chicago/Turabian StyleWang, Peng, Yujing Zhang, and Detong Zhu. 2025. "A New Finite-Difference Method for Nonlinear Absolute Value Equations" Mathematics 13, no. 5: 862. https://doi.org/10.3390/math13050862
APA StyleWang, P., Zhang, Y., & Zhu, D. (2025). A New Finite-Difference Method for Nonlinear Absolute Value Equations. Mathematics, 13(5), 862. https://doi.org/10.3390/math13050862