Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm
Abstract
:1. Introduction
2. Problem Description and Model Construction
2.1. Problem Description
- (1)
- All workpieces, machines, and workers are available at 0;
- (2)
- There are order constraints between the operations of a job;
- (3)
- Maintenance personnel for different machine fault maintenance times is known;
- (4)
- At the same time, a machine can only process one process, and a maintenance worker can only carry out one maintenance activity;
- (5)
- Once started, unless machine failure occurs, no interruption is allowed until the operation is complete;
- (6)
- When the machine fails, the machine will be shut down immediately;
- (7)
- The repair time of the damaged machine is known;
- (8)
- The machine processing and maintenance process cannot be interrupted;
- (9)
- Do not consider transport time in the workpiece processing.
2.2. Model Establishment
2.3. Dynamic Scheduling Strategy
3. ACODDQN for MMO-DFJSP
3.1. ACO Algorithm
3.2. DDQN Algorithm
Algorithm 1. DDQN Algorithm | |
Input: D-empty reply: -initial network parameters; copy of ; Nb-training batch size; Nr-reply buffer maximum size; -target network replacement freq. Output: Parameters of network | |
1: | for episode e ∈ {1,2,…,M}, do |
2: | Initializing frame sequence x ←() |
3: | for t ∈ {0,1,…}, do |
4: | Set state s←x, sample action a~ |
5: | Sample next frame from environment given (s,a), receive reward r, append to x |
6: | if |x| > Nf, then delete oldest frame from x end |
7: | Set s’←x, add transition tuple (s,a,r,s’) to d |
8: | Replace the oldest tuple if |D| ≥ Nr |
9: | Sample a min-batch of Nb tuples (s,a,r,s’) to Unif (D) |
10: | Construct target values, one for each of the Nb tuples |
11: | Define amax(s’,) = argmaxa. Q (s’; a’; ) |
12: | |
13: | Do gradient decent step with loss |
14: | Replace target parameters ← every N’ steps |
15: | end |
16: | end |
3.3. ACODDQN Algorithm
3.3.1. ACODDQN Algorithm Framework
3.3.2. Ant Colony Search Solution Space
3.3.3. Non-Dominant Sort
3.3.4. Pheromone Update Mechanism
3.3.5. DDQN Framework
- (1)
- State set
- (2)
- Action state
- (3)
- Reward
3.3.6. Feasible Solution Optimization
3.3.7. Pareto Optimal Solution Set Generation and Output
4. Experiment and Discussion
4.1. Extension Examples
4.2. Parameter Settings
4.3. Evaluation Indicators
4.4. The Experimental Results of the Extended Example
4.4.1. Comparison with the Composite Scheduling Rule
4.4.2. Comparing Algorithms
4.5. Case Experiments
4.5.1. Case Description
4.5.2. Case Solving and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, H.; Wu, W.; Zhang, T.; Shen, W.; Zhang, T. Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time. J. Zhejiang Univ. 2023, 57, 1267–1277. [Google Scholar]
- Guo, H.Z.; Wang, Y.T.; Liu, J.J.; Liu, C. Multi-UAV Cooperative Task Offloading and Resource Allocation in 5G Advanced and Beyond. IEEE Trans. Wirel. Commun. 2024, 23, 347–359. [Google Scholar] [CrossRef]
- Tariq, A.; Khan, S.A.; But, W.H.; Javaid, A.; Shehryar, T. An IoT-Enabled Real-Time Dynamic Scheduler for Flexible Job Shop Scheduling (FJSS) in an Industry 4.0-Based Manufacturing Execution System (MES 4.0) (vol 12, pg 49653, 2024). IEEE Access 2024, 12, 118941. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Ren, S.; Wang, C.; Ma, S. Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window. Robot. Comput.-Integr. Manuf. 2023, 79, 102435. [Google Scholar] [CrossRef]
- Cheng, D.; Lou, S.; Zheng, H.; Hu, B.; Hong, Z.; Feng, Y.; Tan, J. Industrial Exoskeletons for Human-Centric Manufacturing: Challenges, Progress, and Prospects. Comput. Integr. Manuf. Syst. 2024, 30, 4179. [Google Scholar]
- Jiang, Q.; Wei, J. Real-time Scheduling Method for Dynamic Flexible Job Shop Scheduling. J. Syst. Simul. 2024, 36, 1609–1620. [Google Scholar]
- Gen, M.; Lin, L.; Ohwada, H. Advances in Hybrid Evolutionary Algorithms for Fuzzy Flexible Job-shop Scheduling: State-of-the-Art Survey. In Proceedings of the ICAART (1), Online, 4–6 February 2021; pp. 562–573. [Google Scholar]
- Dauzère-Pérès, S.; Ding, J.; Shen, L.; Tamssaouet, K. The flexible job shop scheduling problem: A review. Eur. J. Oper. Res. 2024, 314, 409–432. [Google Scholar] [CrossRef]
- Yue, L.; Peng, K.; Ding, L.S.; Mumtaz, J.; Lin, L.B.; Zou, T. Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems. Swarm Evol. Comput. 2024, 90, 13. [Google Scholar] [CrossRef]
- Zhang, G.H.; Lu, X.X.; Liu, X.; Zhang, L.T.; Wei, S.W.; Zhang, W.Q. An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown. Expert Syst. Appl. 2022, 203, 12. [Google Scholar] [CrossRef]
- Gao, K.; Yang, F.; Li, J.; Sang, H.; Luo, J. Improved jaya algorithm for flexible job shop rescheduling problem. IEEE Access 2020, 8, 86915–86922. [Google Scholar] [CrossRef]
- Luan, F.; Tang, B.; Li, Y.; Liu, S.Q.; Yang, X.; Masoud, M.; Feng, B. Solving multi-objective green flexible job shop scheduling problem by an improved chimp optimization algorithm. J. Intell. Fuzzy Syst. 2024, 46, 7697–7710. [Google Scholar] [CrossRef]
- Lü, Y.; Xu, Z.; Li, C.; Li, L.; Yang, M. Comprehensive Energy Saving Optimization of Processing Parameters and Job Shop Dynamic Scheduling Considering Disturbance Events. J. Mech. Eng. 2022, 58, 242–255. [Google Scholar]
- Yuan, E.D.; Wang, L.J.; Song, S.J.; Cheng, S.L.; Fan, W. Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning. Appl. Soft Comput. 2025, 171, 13. [Google Scholar] [CrossRef]
- Jimenez, S.H.; Trabelsi, W.; Sauvey, C. Multi-Objective Production Rescheduling: A Systematic Literature Review. Mathematics 2024, 12, 3176. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Tan, B.; Xu, G. Dual Resource Constrained Flexible Job Shop Energy-saving Scheduling Considering Delivery Time. J. Syst. Simul. 2023, 35, 734–746. [Google Scholar]
- Li, X.; Xing, S. Dynamic scheduling problem of multi-objective dual resource flexible job shop based on improved genetic algorithm. In Proceedings of the 43rd Chinese Control Conference, CCC 2024, Kunming, China, 28–31 July 2024; pp. 2046–2051. [Google Scholar]
- Sun, A.; Song, Y.; Yang, Y.; Lei, Q. Dual Resource-constrained Flexible Job Shop Scheduling Algorithm Considering Machining Quality of Key Jobs. China Mech. Eng. 2022, 33, 2590–2600. [Google Scholar]
- Mokhtari, G.; Abolfathi, M. Dual Resource Constrained Flexible Job-Shop Scheduling with Lexicograph Objectives. J. Ind. Eng. Res. Prod. Syst. 2021, 8, 295–309. [Google Scholar]
- Jiang, B.; Ma, Y.J.; Chen, L.J.; Huang, B.D.; Huang, Y.Y.; Guan, L. A Review on Intelligent Scheduling and Optimization for Flexible Job Shop. Int. J. Control Autom. Syst. 2023, 21, 3127–3150. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Senvar, O.; Unal, R.; Bulkan, S. A research survey: Heuristic approaches for solving multi objective flexible job shop problems. J. Intell. Manuf. 2020, 31, 1949–1983. [Google Scholar] [CrossRef]
- Long, X.; Zhang, J.; Zhou, K.; Jin, T. Dynamic self-learning artificial bee colony optimization algorithm for flexible job-shop scheduling problem with job insertion. Processes 2022, 10, 571. [Google Scholar] [CrossRef]
- Chen, F.; Xie, W.; Ma, J.; Chen, J.; Wang, X. Textile Flexible Job-Shop Scheduling Based on a Modified Ant Colony Optimization Algorithm. Appl. Sci. 2024, 14, 4082. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Zhong, P.S.; Zhang, C.; Yang, W.L.; Xiong, W.; Yang, S.H.; Meng, J. A genetic algorithm-based approach for flexible job shop rescheduling problem with machine failure interference. Eksploat. I Niezawodn. 2023, 25, 13. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, X.J.; Chen, G.Z.; Hou, Y.J. Dynamic Intelligent Scheduling in Low-Carbon Heterogeneous Distributed Flexible Job Shops with Job Insertions and Transfers. Sensors 2024, 24, 2251. [Google Scholar] [CrossRef]
- Peng, N.; Zheng, Y.; Xiao, Z.; Gong, G.; Huang, D.; Liu, X.; Zhu, K.; Luo, Q. Multi-objective dynamic distributed flexible job shop scheduling problem considering uncertain processing time. Clust. Comput. 2025, 28, 185. [Google Scholar] [CrossRef]
- Su, C.; Zhang, C.; Wang, C.; Cen, W.; Chen, G.; Xie, L. Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning. Swarm Evol. Comput. 2024, 88, 101605. [Google Scholar] [CrossRef]
- Liu, C.-L.; Chang, C.-C.; Tseng, C.-J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access 2020, 8, 71752–71762. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind. Eng. 2021, 159, 107489. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Gu, X.; Peng, T.; Bao, J.; Zhang, D. Dual-System Reinforcement Learning Approach for Dynamic Scheduling in Flexible Job Shops. J. Shanghai Jiao Tong Univ. 2022, 56, 1262–1275. [Google Scholar] [CrossRef]
- Palacio, J.C.; Jiménez, Y.M.; Schietgat, L.; Van Doninck, B.; Nowé, A. A Q-Learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario. Procedia CIRP 2022, 106, 227–232. [Google Scholar] [CrossRef]
- Gui, Y.; Tang, D.; Zhu, H.; Zhang, Y.; Zhang, Z. Dynamic scheduling for flexible job shop using a deep reinforcement learning approach. Comput. Ind. Eng. 2023, 180, 109255. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Y.; Yang, C.; Hu, Y. Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping. Adv. Eng. Inform. 2024, 62, 102872. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X.; Ai, Y. ACO integrated approach for solving flexible job-shop scheduling with multiple process plans. Comput. Integr. Manuf. Syst. 2018, 24, 558–569. [Google Scholar]
- Zhang, G.; Yan, S.; Lu, X.; Zhang, H. Improved Hybrid Multi-Objective Ant Colony Algorithm for Flexible Job Shop Scheduling Problem with Transportation and Setup Times. Appl. Res. Comput. 2023, 40, 3690–3695. [Google Scholar] [CrossRef]
- Lu, S.J.; Wang, Y.Q.; Kong, M.; Wang, W.Z.; Tan, W.M.; Song, Y.X. A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions. Eng. Appl. Artif. Intell. 2024, 133, 22. [Google Scholar] [CrossRef]
- Meng, F.; Guo, H.; Yan, X.; Wu, Y.; Zhang, D.; Luo, L. Solving Flexible Job Shop Joint Scheduling Problem Based on Multi-Agent Reinforcement Learning. Comput. Integr. Manuf. Syst. 2024, 30, 1–29. [Google Scholar] [CrossRef]
- Meng, L.L.; Zhang, C.Y.; Ren, Y.P.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 13. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, Y.; Zhang, W.; Lei, D.; Wang, J.; Xu, T. A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem. Expert Syst. Appl. 2024, 237, 121723. [Google Scholar] [CrossRef]
- Zain, M.Z.B.; Kanesan, J.; Chuah, J.H.; Dhanapal, S.; Kendall, G. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization. Appl. Soft Comput. 2018, 70, 680–700. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 25. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, H. Multi objective Flexible Job Shop Scheduling Using Memetic Algorithms. IEEE Trans. Autom. Sci. Eng. 2015, 12, 336–353. [Google Scholar] [CrossRef]
- Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020, 91, 17. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Y.; Hu, Y.X.; Amaitik, N.; Xu, Y.C. Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization. Sustainability 2022, 14, 5177. [Google Scholar] [CrossRef]
- Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 2016, 174, 93–110. [Google Scholar] [CrossRef]
Work | State | Dynamic Event | Objective | Algorithm | Problem |
---|---|---|---|---|---|
Chen et al. (2024) [25] | Discrete | Job random arrival | Total tardiness; Total energy consumption | Rainbow DQN | FJSP |
Peng et al. (2025) [26] | Discrete | Random processing time; Variable production | Makespan; Total energy consumption | Efficient meme algorithm (EMA) | FJSP |
Su et al. (2024) [27] | Discrete | Random processing time | Makespan; Maximum load; Machine workload | GRL | FJSP |
Liu et al. (2020) [28] | Discrete | Machine breakdowns; Random processing time | Makespan | Deep deterministic policy gradient | JSP |
Wang et al. (2021) [29] | Discrete | Machine breakdowns; Random processing time | Makespan | PPO | JSP |
Luo et al. (2021) [30] | Continuous | Random job insertion | Makespan; Total tardiness; Average machine utilization | THDQN | JSP |
Liu et al. (2020) [31] | Discrete | Machine breakdowns; Emergency Orders | Makespan | Actor-Critic | JSP |
Palacio et al. (2022) [32] | Discrete | Machine breakdowns; Emergency Orders | Makespan | Q-learning | JSP |
Gui et al. (2023) [33] | Continuous | Random processing time; Job random arrival | Mean tardiness | Deep deterministic policy gradient | FJSP |
Zhang et al. (2024) [34] | Discrete | Job random arrival | Mean tardiness | Dueling double-depth Q-network | FJSP |
This paper | Continuous | Job random arrival; Random processing time; Machine breakdowns | Minimum tardiness; Makespan | ACODDQN | FJSP |
Notation | Description |
---|---|
Indexes: | |
Job index, {1,2,…,} | |
Operational index, {1,2,…,} | |
Machine index, {1,2,…,} | |
Maintenance personnel index, {1,2,…,} | |
Parameters: | |
Total number of jobs | |
Total number of machines | |
Number of operations of job | |
Number of maintenance personnel | |
The job | |
The operation of job | |
Process machining start time of machine | |
Procedure machining end time of machine | |
Processing time of the workpiece | |
Maintenance worker at the beginning of machine maintenance | |
Maintenance worker at the end of machine maintenance | |
Time required for maintenance personnel to repair machine | |
Last time machine can be processed | |
Machine last serviceable time | |
Worker recent repairable moments | |
Machine continuous working time | |
Production cycle time | |
Deadline completion time of job | |
Delay time of job | |
Completion time of job | |
Urgency of job , ∈ [1,3] | |
Decision variables: | |
1 if machine preferentially process operation and 0 otherwise | |
1 if Maintenance worker repairs machine first and 0 otherwise | |
1 if operation fails on machine and 0 otherwise |
Composite Scheduling Rule | Job Scheduling Rule | Machine Scheduling Rule | Maintenance Worker Scheduling Rule |
---|---|---|---|
Rule1 | J1 | M1 | W1 |
Rule2 | J1 | M2 | W1 |
Rule3 | J1 | M1 | W2 |
Rule4 | J1 | M2 | W2 |
Instance | |||||||
---|---|---|---|---|---|---|---|
MWK01 | 10 | 6 | 10 | 3 | [1, 25] | [1, 18] | [1, 3] |
MWK02 | 10 | 6 | 10 | 5 | [1, 25] | [1, 18] | [1, 3] |
MWK03 | 15 | 9 | 8 | 3 | [1, 19] | [1, 20] | [1, 3] |
MWK04 | 15 | 14 | 15 | 5 | [1, 35] | [1, 20] | [1, 3] |
MWK05 | 15 | 15 | 10 | 5 | [4, 29] | [1, 24] | [1, 3] |
MWK06 | 15 | 9 | 4 | 3 | [1, 19] | [2, 24] | [1, 3] |
MWK07 | 20 | 5 | 10 | 3 | [1, 21] | [2, 29] | [1, 3] |
MWK08 | 20 | 7 | 10 | 5 | [1, 21] | [1, 31] | [1, 3] |
MWK09 | 20 | 9 | 15 | 3 | [4, 27] | [1, 27] | [1, 3] |
MWK10 | 20 | 12 | 15 | 5 | [5, 39] | [4, 30] | [1, 3] |
MWK11 | 30 | 9 | 6 | 3 | [10, 29] | [2, 28] | [1, 3] |
MWK12 | 30 | 7 | 10 | 5 | [10, 29] | [2, 28] | [1, 3] |
MWK13 | 30 | 15 | 15 | 5 | [10, 29] | [1, 27] | [1, 3] |
MWK14 | 30 | 9 | 15 | 5 | [10, 29] | [1, 24] | [1, 3] |
MWK15 | 30 | 11 | 25 | 5 | [10, 29] | [3, 16] | [1, 3] |
Parameter | Parameter Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
100 | 125 | 150 | 175 | 200 | |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | |
0.7 | 0.75 | 0.8 | 0.85 | 0.9 | |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
Instance | SP | IGD | HV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACO DDQN | Rule1 | Rule2 | Rule3 | Rule4 | ACO DDQN | Rule1 | Rule2 | Rule3 | Rule4 | ACO DDQN | Rule1 | Rule2 | Rule3 | Rule4 | |
MWK 01 | 0.001 | 0.156 | 0.244 | 0.223 | 0.278 | 0.001 | 0.173 | 0.283 | 0.2492 | 0.249 | 0.317 | 0.127 | 0.073 | 0.098 | 0.012 |
MWK 02 | 0.006 | 0.178 | 0.307 | 0.299 | 0.418 | 0.008 | 0.214 | 0.318 | 0.324 | 0.415 | 0.412 | 0.221 | 0.084 | 0.178 | 0.061 |
MWK 03 | 0.018 | 0.217 | 0.317 | 0.264 | 0.348 | 0.015 | 0.231 | 0.321 | 0.279 | 0.377 | 0.426 | 0.201 | 0.101 | 0.165 | 0.081 |
MWK 04 | 0.087 | 0.124 | 0.245 | 0.199 | 0.268 | 0.111 | 0.278 | 0.387 | 0.294 | 0.476 | 0.578 | 0.312 | 0.088 | 0.211 | 0.045 |
MWK 05 | 0.017 | 0.188 | 0.276 | 0.264 | 0.412 | 0.027 | 0.215 | 0.298 | 0.278 | 0.465 | 0.319 | 0.117 | 0.064 | 0.071 | 0.012 |
MWK 06 | 0.168 | 0.248 | 0.324 | 0.345 | 0.398 | 0.174 | 0.141 | 0.364 | 0.304 | 0.534 | 0.468 | 0.121 | 0.041 | 0.072 | 0.019 |
MWK 07 | 0.075 | 0.126 | 0.208 | 0.167 | 0.345 | 0.108 | 0.147 | 0.212 | 0.188 | 0.378 | 0.371 | 0.146 | 0.073 | 0.119 | 0.038 |
MWK 08 | 0.001 | 0.148 | 0.274 | 0.211 | 0.442 | 0.003 | 0.167 | 0.289 | 0.241 | 0.454 | 0.314 | 0.146 | 0.069 | 0.112 | 0.013 |
MWK 09 | 0.078 | 0.124 | 0.278 | 0.225 | 0.354 | 0.115 | 0.197 | 0.307 | 0.259 | 0.394 | 0.617 | 0.412 | 0.217 | 0.316 | 0.110 |
MWK 10 | 0.001 | 0.124 | 0.279 | 0.188 | 0.317 | 0.001 | 0.121 | 0.297 | 0.226 | 0.324 | 0.407 | 0.201 | 0.062 | 0.123 | 0.032 |
MWK 11 | 0.112 | 0.176 | 0.236 | 0.185 | 0.318 | 0.128 | 0.189 | 0.243 | 0.198 | 0.337 | 0.509 | 0.347 | 0.124 | 0.173 | 0.081 |
MWK 12 | 0.112 | 0.098 | 0.247 | 0.164 | 0.324 | 0.117 | 0.197 | 0.378 | 0.241 | 0.489 | 0.462 | 0.217 | 0.114 | 0.162 | 0.046 |
MWK 13 | 0.224 | 0.288 | 0.398 | 0.327 | 0.412 | 0.245 | 0.317 | 0.408 | 0.387 | 0.489 | 0.586 | 0.317 | 0.114 | 0.265 | 0.072 |
MWK 14 | 0.115 | 0.228 | 0.364 | 0.308 | 0.378 | 0.167 | 0.291 | 0.378 | 0.322 | 0.408 | 0.496 | 0.328 | 0.102 | 0.267 | 0.041 |
MWK 15 | 0.116 | 0.317 | 0.402 | 0.379 | 0.409 | 0.218 | 0.347 | 0.466 | 0.461 | 0.507 | 0.617 | 0.318 | 0.106 | 0.217 | 0.071 |
T/s | Instance | MWK01 | MWK02 | MWK03 | MWK04 | MWK05 | MWK06 | MWK07 | MWK08 | MWK09 | MWK10 | MWK11 | MWK12 | MWK13 | MWK14 | MWK15 |
ACO DDQN | 52 | 55 | 68 | 63 | 67 | 73 | 81 | 59 | 76 | 68 | 72 | 75 | 86 | 89 | 95 | |
Rule1 | 62 | 69 | 77 | 98 | 107 | 112 | 134 | 176 | 136 | 116 | 136 | 199 | 279 | 185 | 221 | |
Rule2 | 72 | 85 | 103 | 136 | 175 | 178 | 196 | 335 | 229 | 207 | 346 | 319 | 514 | 346 | 389 | |
Rule3 | 69 | 77 | 79 | 104 | 120 | 157 | 180 | 246 | 161 | 176 | 196 | 208 | 364 | 264 | 251 | |
Rule4 | 89 | 109 | 145 | 180 | 214 | 267 | 349 | 368 | 346 | 380 | 426 | 657 | 616 | 765 | 796 |
Instance | SP | IGD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACO DDQN | IGWO | NSGA II | PPO | MO PSO | DDQN | GA | ACO DDQN | IGWO | NSGA II | PPO | MO PSO | DDQN | GA | |
MWK01 | 0.065 | 0.131 | 0.211 | 0.074 | 0.251 | 0.083 | 0.327 | 0.018 | 0.226 | 0.266 | 0.185 | 0.325 | 0.203 | 0.350 |
MWK02 | 0.050 | 0.335 | 0.431 | 0.332 | 0.497 | 0.347 | 0.525 | 0.239 | 0.408 | 0.430 | 0.393 | 0.384 | 0.396 | 0.411 |
MWK03 | 0.059 | 0.181 | 0.225 | 0.051 | 0.371 | 0.102 | 0.245 | 0.111 | 0.263 | 0.292 | 0.152 | 0.329 | 0.196 | 0.367 |
MWK04 | 0.036 | 0.211 | 0.294 | 0.047 | 0.336 | 0.119 | 0.406 | 0.198 | 0.386 | 0.456 | 0.124 | 0.561 | 0.213 | 0.536 |
MWK05 | 0.024 | 0.220 | 0.388 | 0.164 | 0.447 | 0.229 | 0.438 | 0.195 | 0.345 | 0.472 | 0.247 | 0.497 | 0.346 | 0.521 |
MWK06 | 0.049 | 0.147 | 0.199 | 0.025 | 0.281 | 0.088 | 0.334 | 0.146 | 0.257 | 0.280 | 0.197 | 0.313 | 0.213 | 0.282 |
MWK07 | 0.041 | 0.154 | 0.253 | 0.072 | 0.331 | 0.102 | 0.293 | 0.134 | 0.212 | 0.273 | 0.177 | 0.395 | 0.193 | 0.369 |
MWK08 | 0.080 | 0.362 | 0.476 | 0.198 | 0.532 | 0.299 | 0.554 | 0.156 | 0.446 | 0.501 | 0.202 | 0.540 | 0.340 | 0.465 |
MWK09 | 0.090 | 0.176 | 0.292 | 0.104 | 0.334 | 0.133 | 0.345 | 0.189 | 0.454 | 0.521 | 0.192 | 0.589 | 0.221 | 0.581 |
MWK10 | 0.176 | 0.355 | 0.471 | 0.279 | 0.517 | 0.351 | 0.504 | 0.288 | 0.438 | 0.473 | 0.344 | 0.502 | 0.367 | 0.393 |
MWK11 | 0.237 | 0.567 | 0.669 | 0.315 | 0.712 | 0.472 | 0.694 | 0.399 | 0.578 | 0.672 | 0.347 | 0.734 | 0.486 | 0.674 |
MWK12 | 0.109 | 0.324 | 0.377 | 0.269 | 0.407 | 0.312 | 0.427 | 0.156 | 0.356 | 0.398 | 0.277 | 0.426 | 0.341 | 0.455 |
MWK13 | 0.205 | 0.331 | 0.341 | 0.247 | 0.411 | 0.267 | 0.431 | 0.232 | 0.342 | 0.359 | 0.261 | 0.435 | 0.279 | 0.410 |
MWK14 | 0.167 | 0.378 | 0.381 | 0.222 | 0.415 | 0.271 | 0.365 | 0.188 | 0.394 | 0.416 | 0.264 | 0.507 | 0.289 | 0.448 |
MWK15 | 0.116 | 0.345 | 0.388 | 0.269 | 0.416 | 0.305 | 0.430 | 0.136 | 0.367 | 0.411 | 0.297 | 0.465 | 0.324 | 0.402 |
Instance | MWK01 | MWK02 | MWK03 | MWK04 | MWK05 | MWK06 | MWK07 | MWK08 | MWK09 | MWK10 | MWK11 | MWK12 | MWK13 | MWK14 | MWK15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HV | ACO DDQN | 0.611 | 0.347 | 0.371 | 0.624 | 0.581 | 0.390 | 0.281 | 0.513 | 0.327 | 0.142 | 0.417 | 0.191 | 0.137 | 0.288 | 0.131 |
IGWO | 0.234 | 0.013 | 0.191 | 0.012 | 0.214 | 0.017 | 0.098 | 0.311 | 0.059 | 0.038 | 0.119 | 0.046 | 0.076 | 0.124 | 0.056 | |
NSGAII | 0.107 | 0.004 | 0.051 | 0.01 | 0.205 | 0.012 | 0.083 | 0.137 | 0.035 | 0.023 | 0.084 | 0.008 | 0.036 | 0.107 | 0.035 | |
PPO | 0.552 | 0.135 | 0.262 | 0.261 | 0.476 | 0.390 | 0.136 | 0.528 | 0.182 | 0.117 | 0.323 | 0.129 | 0.124 | 0.214 | 0.112 | |
MOPSO | 0.004 | 0.006 | 0.032 | 0.004 | 0.365 | 0.012 | 0.081 | 0.134 | 0.027 | 0.017 | 0.042 | 0.005 | 0.026 | 0.082 | 0.032 | |
DDQN | 0.495 | 0.111 | 0.214 | 0.207 | 0.101 | 0.312 | 0.123 | 0.352 | 0.192 | 0.054 | 0.317 | 0.092 | 0.101 | 0.195 | 0.081 | |
GA | 0.003 | 0.001 | 0.018 | 0.006 | 0.093 | 0.002 | 0.095 | 0.115 | 0.030 | 0.029 | 0.044 | 0.025 | 0.021 | 0.131 | 0.035 |
Instance | MWK01 | MWK02 | MWK03 | MWK04 | MWK05 | MWK06 | MWK07 | MWK08 | MWK09 | MWK10 | MWK11 | MWK12 | MWK13 | MWK14 | MWK15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T/s | ACO DDQN | 52 | 55 | 68 | 63 | 67 | 73 | 81 | 59 | 76 | 68 | 72 | 75 | 86 | 89 | 95 |
IGWO | 56 | 57 | 94 | 72 | 88 | 147 | 153 | 68 | 162 | 105 | 160 | 163 | 162 | 161 | 188 | |
NSGA II | 73 | 76 | 108 | 96 | 100 | 172 | 200 | 91 | 212 | 124 | 196 | 206 | 212 | 193 | 228 | |
PPO | 81 | 104 | 162 | 136 | 142 | 236 | 241 | 124 | 294 | 180 | 246 | 270 | 294 | 239 | 305 | |
MOPSO | 96 | 82 | 121 | 109 | 110 | 210 | 159 | 99 | 164 | 132 | 189 | 178 | 164 | 168 | 197 | |
DDQN | 102 | 105 | 122 | 121 | 117 | 227 | 235 | 130 | 265 | 129 | 214 | 239 | 265 | 205 | 265 | |
GA | 152 | 166 | 183 | 172 | 160 | 246 | 267 | 143 | 302 | 135 | 236 | 251 | 301 | 246 | 368 |
Ji | Oij | m1 | m2 | m3 | m4 | m5 | m6 | Ji | Oij | m1 | m2 | m3 | m4 | m5 | m6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | O11 | - | - | - | 22 | 16 | - | J6 | O61 | 27 | 16 | 15 | |||
O12 | 12 | - | 21 | 29 | 16 | - | O62 | 13 | 25 | 28 | 26 | ||||
O13 | 19 | 21 | - | 28 | 18 | - | O63 | 26 | 26 | 27 | 20 | 13 | |||
O14 | 17 | - | - | - | 23 | 17 | J7 | O71 | - | 20 | 22 | 17 | - | 18 | |
J2 | O21 | 21 | 28 | - | - | 19 | 16 | O72 | 15 | 19 | 28 | ||||
O22 | - | 15 | 21 | 20 | - | O73 | 14 | 24 | 16 | 27 | |||||
O23 | 25 | 19 | 18 | 53 | - | 26 | J8 | O81 | 28 | 25 | 21 | 20 | |||
J3 | O31 | 24 | 20 | 22 | 22 | 25 | O82 | 19 | 28 | 19 | |||||
O32 | 21 | 23 | 23 | O83 | 20 | 22 | 18 | ||||||||
O33 | 23 | 17 | 19 | J9 | O91 | 17 | 25 | 24 | 29 | ||||||
O34 | 32 | 28 | 29 | 21 | O92 | 20 | 21 | 25 | 22 | ||||||
J4 | O41 | 18 | 16 | 21 | O93 | 18 | 16 | 18 | |||||||
O42 | 21 | 24 | 26 | 17 | O94 | 21 | 25 | 29 | 23 | ||||||
O43 | 27 | 18 | 20 | 22 | J10 | O101 | 20 | 18 | 24 | ||||||
J5 | O51 | 23 | 24 | 17 | 21 | 17 | O10.2 | 15 | 18 | 19 | 18 | 16 | 22 | ||
O52 | 30 | 12 | 23 | 25 | 26 | O10.3 | 14 | 12 | 16 | ||||||
O53 | 22 | 18 | 19 | O10.4 | 23 | 24 | 27 | ||||||||
O54 | 21 | 26 | 23 | 27 | O10.5 | 22 | 17 | 18 | 19 |
Mi | m1 | m2 | m3 | m4 | m5 | m6 | |
---|---|---|---|---|---|---|---|
Wi | |||||||
W1 | 12 | 18 | 15 | ||||
W2 | 8 | 13 | 16 | 19 | 24 | ||
W3 | 9 | 15 | 12 | 16 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhang, J.; Cao, J.; Xu, X.; Shao, Y.; Cheng, Z. Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm. Mathematics 2025, 13, 932. https://doi.org/10.3390/math13060932
Lu J, Zhang J, Cao J, Xu X, Shao Y, Cheng Z. Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm. Mathematics. 2025; 13(6):932. https://doi.org/10.3390/math13060932
Chicago/Turabian StyleLu, Jiansha, Jiarui Zhang, Jun Cao, Xuesong Xu, Yiping Shao, and Zhenbo Cheng. 2025. "Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm" Mathematics 13, no. 6: 932. https://doi.org/10.3390/math13060932
APA StyleLu, J., Zhang, J., Cao, J., Xu, X., Shao, Y., & Cheng, Z. (2025). Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm. Mathematics, 13(6), 932. https://doi.org/10.3390/math13060932