Graph-to-Text Generation with Bidirectional Dual Cross-Attention and Concatenation
Abstract
:1. Introduction
- We propose a dual cross-attention that leverages bidirectional interaction, enabling the graph attention to extract sequential context from the transformer encoder while allowing the transformer encoder to access structural information from the graph.
- We concatenate the attended outputs to fuse from the two cross-attention mechanisms, enabling effective feature fusion across modalities.
- We prove through our ablation study that graph attention performs better than the standard transformer encoder for G2T generation.
- We empirically validate the proposed approach using the PathQuestions and WebNLG benchmark datasets, demonstrating its effectiveness in generating coherent and contextually relevant text from structured data.
2. Related Work
2.1. Data-to-Text as Seq2Seq Tasks
2.2. Data-to-Text as Structure-Aware Seq2Seq Tasks
2.2.1. Further Pre-Training
2.2.2. Graph Representation
3. Methodology
3.1. Problem Formulation
3.2. Proposed Framework
3.3. Linearized Graph Encoder
Graph Linearization
3.4. Graph Encoder
3.5. Bidirectional Dual Cross-Attention and Concatenation
3.6. Bidirectional Dual Cross-Attentions
3.7. Concatenation
3.8. Feedforward Network
3.9. Decoder
4. Experiment
4.1. Experimental Setup
4.2. Experimental Dataset
4.3. Automatic Evaluation
4.4. Baseline Models
- KGPT [9]: Leverages pre-training and transfer learning to generate text enriched with external knowledge.
- CSAD [38]: Presents a distillation model for G2T generation that uses cross-structure attention to enhance interactions between structured data and text while training a student to mimic a teacher model.
- Dual-path encoder [16]: Integrates attention-based graph encoder into the linearized graph encoder to enhance representation, complemented by an alignment and guidance module that utilizes a pointer network to improve generation accuracy.
- G2S [48]: Generates texts from the graph, using a bidirectional graph to sequence model to encode the graph and a node-level copying mechanism to enhance the decoder.
- JointGT [8]: Applied further pre-training of T5 and BART transformer models on structured data followed by fine-tuning on downstream G2T generation.
- GAP [13]: Integrates graph-aware elements into PLMs through a mask structure that captures neighborhood information and a type encoder that biases graph-attention weights based on connection types.
- GCN [50]: Employs a graph convolutional neural encoder to process structured data for G2T generation.
5. Discussion of the Results
6. Ablation Study
- BDCC: The proposed bidirectional dual cross-attention and concatenation for G2T. This approach allows for a more nuanced interaction between the graph and transformer components, facilitating better contextual information exchange.
- Concatenation: G2T with simple concatenation of graph and transformer-based encoders.
- Graph encoder (GE): The G2T model relied solely on the graph attention (GATv2) mechanism, denoting individual contribution to the model performance.
- Linearized graph encoder (LGE): G2T based on the linearization of graph data using a transformer-based encoder model.
- Unidirectional graph attention (UGA): This variant uses only the graph output to attend to the transformer output without allowing feedback from the transformer to the graph.
- Unidirectional transformer attention (UTA): This variant uses only the transformer output to attend to the graph output, limiting feedback from the graph.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BART | bidirectional and auto-regressive transformer |
BDCC | bidirectional dual cross-attention and concatenation |
D2T | data-to-text generation |
GAT | graph attention network |
GATv2 | Graph Attention Network Version 2 |
G2T | graph-to-text generation |
GNN | graph neural network |
PLMs | pre-trained language models |
Seq2Seq | sequence-to-sequence |
T5 | text-to-text transfer transformer |
UGA | unidirectional graph attention |
UTA | unidirectional transformer attention |
Appendix A. Model Specifications and Training Parameters
BART-Base Model | Value |
---|---|
Layers | 6 + 6 |
Heads | 12 |
Parameters | 140 M |
GATv2 Model | Value |
---|---|
Heads | 4 |
Layers (1 hidden 1 output) | 2 |
Dropout rate | 0.2 |
Leaky ReLU negative slope | 0.2 |
Dropout rate (in the layer) | 0.3 |
Param | Value |
---|---|
Optimizer | AdamW |
Beam size | 5 |
Warm-up steps | 1100/1600 |
Batch Size | 32/32 |
Learning Rate | / |
Epochs | 60 /120 |
References
- Gupta, R.; Srinivasa, S. Workshop on Enterprise Knowledge Graphs using Large Language Models. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23), Birmingham, UK, 21–25 October 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 5271–5272. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Geng, R.; Yang, M.; Li, B.; Yuan, G.; He, W.; Yuan, S.; Ma, C.; Huang, F.; et al. Unifying Structured Data as Graph for Data-to-Text Pre-Training. Trans. Assoc. Comput. Linguist. 2024, 12, 210–228. [Google Scholar] [CrossRef]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 6–8 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 7871–7880. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 2017, 40, 52–74. [Google Scholar]
- Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T.Y. Do transformers really perform bad for graph representation? In Proceedings of the 35th International Conference on Neural Information Processing Systems (NIPS ’21), Vancouver, BC, Canada, 7–10 December 2021; Curran Associates Inc.: Red Hook, NY, USA, 2021. [Google Scholar]
- Wang, T.; Shen, B.; Zhang, J.; Zhong, Y. Improving PLMs for Graph-to-Text Generation by Relational Orientation Attention. Neural Process. Lett. 2023, 55, 7967–7983. [Google Scholar] [CrossRef]
- Yuan, S.; Färber, M. GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism. In Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico, 16–21 June 2024; Duh, K., Gomez, H., Bethard, S., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 920–933. [Google Scholar] [CrossRef]
- Ke, P.; Ji, H.; Ran, Y.; Cui, X.; Wang, L.; Song, L.; Zhu, X.; Huang, M. JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Bangkok, Thailand, 1–6 August 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 2526–2538. [Google Scholar] [CrossRef]
- Chen, W.; Su, Y.; Yan, X.; Wang, W.Y. KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation. In Proceedings of the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Webber, B., Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 8635–8648. [Google Scholar] [CrossRef]
- Yang, Z.; Einolghozati, A.; Inan, H.; Diedrick, K.; Fan, A.; Donmez, P.; Gupta, S. Improving Text-to-Text Pre-trained Models for the Graph-to-Text Task. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), Dublin, Ireland, 18 December 2020; Castro Ferreira, T., Gardent, C., Ilinykh, N., van der Lee, C., Mille, S., Moussallem, D., Shimorina, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 107–116. [Google Scholar]
- Yin, X.; Wan, X. How Do Seq2Seq Models Perform on End-to-End Data-to-Text Generation? In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 7701–7710. [Google Scholar] [CrossRef]
- Xie, Y.; Aggarwal, K.; Ahmad, A. Efficient Continual Pre-training for Building Domain Specific Large Language Models. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2024, Bangkok, Thailand, 11–16 August 2024; Ku, L.W., Martins, A., Srikumar, V., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 10184–10201. [Google Scholar] [CrossRef]
- Colas, A.; Alvandipour, M.; Wang, D.Z. GAP: A Graph-aware Language Model Framework for Knowledge Graph-to-Text Generation. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; Calzolari, N., Huang, C.R., Kim, H., Pustejovsky, J., Wanner, L., Choi, K.S., Ryu, P.M., Chen, H.H., Donatelli, L., Ji, H., et al., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 5755–5769. [Google Scholar]
- Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-BERT: Enabling Language Representation with Knowledge Graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 2901–2908. [Google Scholar] [CrossRef]
- Shi, X.; Xia, Z.; Li, Y.; Wang, X.; Niu, Y. Fusing graph structural information with pre-trained generative model for knowledge graph-to-text generation. Knowl. Inf. Syst. 2024, 67, 2619–2640. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Su, X.; Li, J.; Gao, G. Exploring the Synergy of Dual-path Encoder and Alignment Module for Better Graph-to-Text Generation. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), Torino, Italy, 20–25 May 2024; Calzolari, N., Kan, M.Y., Hoste, V., Lenci, A., Sakti, S., Xue, N., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 6980–6991. [Google Scholar]
- Zhao, C.; Walker, M.; Chaturvedi, S. Bridging the Structural Gap Between Encoding and Decoding for Data-To-Text Generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 2481–2491. [Google Scholar] [CrossRef]
- Kale, M.; Rastogi, A. Text-to-Text Pre-Training for Data-to-Text Tasks. In Proceedings of the 13th International Conference on Natural Language Generation, Dublin, Ireland, 15–18 December 2020; Davis, B., Graham, Y., Kelleher, J., Sripada, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 97–102. [Google Scholar] [CrossRef]
- Jimale, E.L.; Wenyu, C.; Al-antari, M.A.; Gu, Y.H.; Agbesi, V.K.; Feroze, W. DecoStrat: Leveraging the Capabilities of Language Models in D2T Generation via Decoding Framework. Mathematics 2024, 12, 3596. [Google Scholar] [CrossRef]
- Kim, J.; Nguyen, T.D.; Min, S.; Cho, S.; Lee, M.; Lee, H.; Hong, S. Pure transformers are powerful graph learners. In Proceedings of the 36th International Conference on Neural Information Processing Systems (NIPS ’22), New Orleans, LA, USA, 28 November–9 December 2022; Curran Associates Inc.: Red Hook, NY, USA, 2022. [Google Scholar]
- Ribeiro, L.F.R.; Schmitt, M.; Schütze, H.; Gurevych, I. Investigating Pretrained Language Models for Graph-to-Text Generation. In Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI, Online, 10 November 2021; Papangelis, A., Budzianowski, P., Liu, B., Nouri, E., Rastogi, A., Chen, Y.N., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 211–227. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Brody, S.; Alon, U.; Yahav, E. How Attentive are Graph Attention Networks? In Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022. [Google Scholar]
- Chen, F.; Wang, Y.C.; Wang, B.; Kuo, C.C.J. Graph representation learning: A survey. APSIPA Trans. Signal Inf. Process. 2020, 9, e15. [Google Scholar] [CrossRef]
- Kanatsoulis, C.I.; Ribeiro, A. Graph Neural Networks are More Powerful than We Think. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 7550–7554. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Chen, Z.; Mao, H.; Li, H.; Jin, W.; Wen, H.; Wei, X.; Wang, S.; Yin, D.; Fan, W.; Liu, H.; et al. Exploring the Potential of Large Language Models (LLMs)in Learning on Graphs. ACM SIGKDD Explor. Newsl. 2024, 25, 42–61. [Google Scholar] [CrossRef]
- Lee, S.Y.; Bu, F.; Yoo, J.; Shin, K. Towards deep attention in graph neural networks: Problems and remedies. In Proceedings of the 40th International Conference on Machine Learning (ICML’23), Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P.; Bengio, S. Why Does Unsupervised Pre-training Help Deep Learning? J. Mach. Learn. Res. 2010, 11, 625–660. [Google Scholar]
- Ye, H.; Chen, X.; Wang, L.; Du, S.S. On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness. In Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J., Eds.; JMLR.org: Norfolk, MA, USA, 2023; Volume 202, pp. 39770–39800. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Gheini, M.; Ren, X.; May, J. Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online, 7–11 November 2021; Moens, M.F., Huang, X., Specia, L., Yih, S.W.T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 1754–1765. [Google Scholar] [CrossRef]
- Zhang, K.; Balalau, O.; Manolescu, I. FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6–10 December 2023; Bouamor, H., Pino, J., Bali, K., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2023; pp. 10025–10042. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Z.; Dai, N.; Qiu, X.; Xue, X.; Wipf, D.; Zhang, Z. P2: A Plan-and-Pretrain Approach for Knowledge Graph-to-Text Generation. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), Dublin, Ireland, 18 December 2020; Castro Ferreira, T., Gardent, C., Ilinykh, N., van der Lee, C., Mille, S., Moussallem, D., Shimorina, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 100–106. [Google Scholar]
- Han, J.; Shareghi, E. Self-supervised Graph Masking Pre-training for Graph-to-Text Generation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 4845–4853. [Google Scholar] [CrossRef]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for Quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML’17), Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1263–1272. [Google Scholar]
- Ye, Z.; Kumar, Y.J.; Sing, G.O.; Song, F.; Wang, J. A Comprehensive Survey of Graph Neural Networks for Knowledge Graphs. IEEE Access 2022, 10, 75729–75741. [Google Scholar] [CrossRef]
- Shi, X.; Xia, Z.; Cheng, P.; Li, Y. Enhancing text generation from knowledge graphs with cross-structure attention distillation. Eng. Appl. Artif. Intell. 2024, 136, 108971. [Google Scholar] [CrossRef]
- Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 2016, 104, 11–33. [Google Scholar] [CrossRef]
- Bordes, A.; Weston, J.; Collobert, R.; Bengio, Y. Learning structured embeddings of knowledge bases. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI’11), San Francisco, CA, USA, 7–11 August 2011; pp. 301–306. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; Liu, Q., Schlangen, D., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 38–45. [Google Scholar] [CrossRef]
- Serban, I.V.; García-Durán, A.; Gulcehre, C.; Ahn, S.; Chandar, S.; Courville, A.; Bengio, Y. Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; Erk, K., Smith, N.A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 588–598. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, M.; Zhu, X. An Interpretable Reasoning Network for Multi-Relation Question Answering. In Proceedings of the 27th International Conference on Computational Linguistics, Hsinchu, Taiwan, 1–2 October 2015; Bender, E.M., Derczynski, L., Isabelle, P., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 2010–2022. [Google Scholar]
- Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the The Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Republic of Korea, 11–15 November 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 722–735. [Google Scholar] [CrossRef]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2016; Isabelle, P., Charniak, E., Lin, D., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 311–318. [Google Scholar] [CrossRef]
- Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Text Summarization Branches Out, Barcelona, Spain, 25–26 July 2004; pp. 74–81. [Google Scholar]
- Banerjee, S.; Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, MI, USA, 5–8 November 2018; Goldstein, J., Lavie, A., Lin, C.Y., Voss, C., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2005; pp. 65–72. [Google Scholar]
- Chen, Y.; Wu, L.; Zaki, M.J. Toward Subgraph-Guided Knowledge Graph Question Generation With Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 12706–12717. [Google Scholar] [CrossRef] [PubMed]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Marcheggiani, D.; Perez-Beltrachini, L. Deep Graph Convolutional Encoders for Structured Data to Text Generation. In Proceedings of the 11th International Conference on Natural Language Generation, Tilburg, The Netherlands, 5–8 November 2018; Krahmer, E., Gatt, A., Goudbeek, M., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
Basic Seq2Seq | Structure-Aware Seq2Seq |
---|---|
Strengths | |
|
|
Limitations | |
|
|
Dataset | Entities | Relations | Train | Valid | Test | Triples | Length |
---|---|---|---|---|---|---|---|
PQ | 7250 | 378 | 9793 | 1000 | 1000 | 2.7 | 14.0 |
WebNLG | 3114 | 373 | 34,352 | 4316 | 4224 | 2.9 | 22.7 |
Dataset | PathQuestions | WebNLG | ||||
---|---|---|---|---|---|---|
Model | BLEU | METEOR | ROUGE | BLEU | METEOR | ROUGE |
GCN [50] | - | - | - | 60.80 | 42.76 | 71.13 |
G2S [48] | 61.48 | 44.57 | 77.72 | - | - | - |
T5 [49] | 58.95 | 44.72 | 76.58 | 64.42 | 46.58 | 74.77 |
BART [3] | 63.74 | 47.23 | 77.76 | 64.55 | 46.51 | 75.13 |
KGPT [9] | - | - | - | 64.11 | 46.30 | 74.57 |
JointGT (BART) [8] | 65.89 | 48.25 | 78.87 | 65.92 | 47.15 | 76.10 |
JointGT (T5) [8] | 60.45 | 45.38 | 77.59 | 66.14 | 47.25 | 75.91 |
Dual-path encoder [16] | 67.20 | 48.56 | 79.62 | 66.41 | 47.38 | 76.18 |
CSAD [38] | 66.61 | 49.12 | 77.04 | - | - | - |
GAP [13] | - | - | - | 66.20 | 46.77 | 76.36 |
BDCC (Ours) | 67.41 | 49.63 | 76.29 | 66.58 | 47.44 | 76.32 |
Dataset | PathQuestions | ||||||
---|---|---|---|---|---|---|---|
Model | #Param | B | M | R | Precision | Recall | f1_score |
T5 [49] | 220 M | 58.95 | 44.72 | 76.58 | - | - | - |
BART [3] | 140 M | 63.74 | 47.23 | 77.76 | - | - | - |
BDCC | 166 M | 67.41 * | 49.63 * | 76.29 | 0.901 | 0.8962 | 0.8972 |
Concatenation | 164 M | 65.86 | 48.67 | 76.58 | 0.8965 | 0.8914 | 0.8938 |
GE | - | 65.37 | 48.49 | 76.10 | 0.8945 | 0.8907 | 0.8924 |
LGE | 160 M | 65.74 | 48.63 | 75.27 | 0.8981 | 0.8937 | 0.8957 |
UGA | 165 M | 65.91 | 48.82 | 75.62 | 0.8978 | 0.8940 | 0.8956 |
UTA | 165 M | 65.97 | 48.93 | 75.96 | 0.8987 | 0.8944 | 0.8936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimale, E.L.; Chen, W.; Al-antari, M.A.; Gu, Y.H.; Agbesi, V.K.; Feroze, W.; Akmel, F.; Assefa, J.M.; Shahzad, A. Graph-to-Text Generation with Bidirectional Dual Cross-Attention and Concatenation. Mathematics 2025, 13, 935. https://doi.org/10.3390/math13060935
Jimale EL, Chen W, Al-antari MA, Gu YH, Agbesi VK, Feroze W, Akmel F, Assefa JM, Shahzad A. Graph-to-Text Generation with Bidirectional Dual Cross-Attention and Concatenation. Mathematics. 2025; 13(6):935. https://doi.org/10.3390/math13060935
Chicago/Turabian StyleJimale, Elias Lemuye, Wenyu Chen, Mugahed A. Al-antari, Yeong Hyeon Gu, Victor Kwaku Agbesi, Wasif Feroze, Feidu Akmel, Juhar Mohammed Assefa, and Ali Shahzad. 2025. "Graph-to-Text Generation with Bidirectional Dual Cross-Attention and Concatenation" Mathematics 13, no. 6: 935. https://doi.org/10.3390/math13060935
APA StyleJimale, E. L., Chen, W., Al-antari, M. A., Gu, Y. H., Agbesi, V. K., Feroze, W., Akmel, F., Assefa, J. M., & Shahzad, A. (2025). Graph-to-Text Generation with Bidirectional Dual Cross-Attention and Concatenation. Mathematics, 13(6), 935. https://doi.org/10.3390/math13060935