Edge and Node Enhancement Graph Convolutional Network: Imbalanced Graph Node Classification Method Based on Edge-Node Collaborative Enhancement
Abstract
:1. Introduction
- We proposed a method that combines edge enhancement and node enhancement. The method first performs edge enhancement, then generates data to balance the training scenario after node embeddings are obtained.
- We performed classification experiments and ablation experiments on several imbalanced graph datasets. The experimental results show that the proposed algorithm is superior to the baseline methods, especially for sparsely connected nodes. The ablation experiments further demonstrate that both steps, edge enhancement and node enhancement, positively improve the classification results.
- We compared the classification results under various parameter settings and discussed a reasonable range of value for the parameter.
2. Related Research
2.1. Node Enhancement Methods
2.2. Edge Enhancement Methods
3. Proposed Method
3.1. Preliminary
3.2. Overview and Implementation
3.3. Time Complexity
4. Experiment
4.1. Experimental Setup
4.1.1. Experimental Environment
4.1.2. Datasets
4.1.3. Comparison Methods and Parameter Settings
4.1.4. Evaluation Metrics
4.2. Classification Results and Ablation Experiments
4.2.1. Classification Results
4.2.2. Ablation Experiments
4.3. Edge Enhancement Results
4.4. Parameter Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Zhang, S.; Chen, W.; Hao, X. Identification and Correction of Abnormal Measurement Data in Power System Based on Graph Convolutional Network and Gated Recurrent Unit. Electr. Power Syst. Res. 2023, 224, 109740. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, L.; Ling, M.; Peng, Y. A Survey of Graph Neural Network Based Recommendation in Social Networks. Neurocomputing 2023, 549, 126441. [Google Scholar] [CrossRef]
- Lee, C.G.; Bollacker, K.; Lawrence, S. CiteSeer: An Automatic Citation Indexing System. In Proceedings of the DL ‘98: Proceedings of the Third ACM Conference on Digital Libraries, Pittsburgh, PA, USA, 23–26 June 1998. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Chen, D.; Lin, Y.; Zhao, G.; Ren, X.; Li, P.; Zhou, J.; Sun, X. Topology-Imbalance Learning for Semi-Supervised Node Classification. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021; Volume 34. [Google Scholar]
- Qu, L.; Zhu, H.; Zheng, R.; Shi, Y.; Yin, H. ImGAGN:Imbalanced Network Embedding via Generative Adversarial Graph Networks. arXiv 2021, arXiv:2106.02817. [Google Scholar]
- Shi, M.; Tang, Y.; Zhu, X.; Wilson, D.; Liu, J. Multi-Class Imbalanced Graph Convolutional Network Learning. In Proceedings of the Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence Main Track, Yokohama, Japan, 7–15 January 2020. [Google Scholar] [CrossRef]
- Wu, L.; Lin, H.; Gao, Z.; Tan, C.; Li, S.Z. GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-Supervised Context Prediction. arXiv 2021, arXiv:2106.11133. [Google Scholar]
- Pei, H.; Wei, B.; Chang, K.C.-C.; Lei, Y.; Yang, B. Geom-GCN: Geometric Graph Convolutional Networks. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar] [CrossRef]
- Jin, D.; Yu, Z.; Huo, C.; Wang, R.; Wang, X.; He, D.; Han, J. Universal Graph Convolutional Networks. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021; Volume 34. [Google Scholar]
- Enxhell, L.; Day, B.; Lio, P. Clique Pooling for Graph Classification. arXiv 2019, arXiv:1904.00374. [Google Scholar]
- Molaei, S.; Bousejin, N.G.; Zare, H.; Jalili, M.; Pan, S. Learning Graph Representations with Maximal Cliques. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1089–1096. [Google Scholar] [CrossRef]
- Ghorbani, M.; Kazi, A.; Soleymani Baghshah, M.; Rabiee, H.R.; Navab, N. RA-GCN: Graph Convolutional Network for Disease Prediction Problems with Imbalanced Data. Med. Image Anal. 2022, 75, 102272. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, X.; Wang, S. GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks. In Proceedings of the WSDM ‘21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Online, 8–12 March 2021; pp. 833–841. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, H.; Xu, Y. Balanced Neighbor Exploration for Semi-Supervised Node Classification on Imbalanced Graph Data. Inf. Sci. 2023, 631, 31–44. [Google Scholar] [CrossRef]
- Franceschi, L.; Niepert, M.; Pontil, M.; He, X. Learning Discrete Structures for Graph Neural Networks. In Proceedings of the The Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2019; Volume 97, pp. 1972–1982. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Zaki, M.J. Deep Iterative and Adaptive Learning for Graph Neural Networks. arXiv 2019, arXiv:1912.07832. [Google Scholar] [CrossRef]
- Park, J.; Yoo, S.; Park, J.; Kim, H.J. Deformable Graph Convolutional Networks. Proc. AAAI Conf. Artif. Intell. 2022, 36, 7949–7956. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. Int. Conf. Learn. Represent. 2017, arXiv:1710.10903. [Google Scholar]
- Brody, S.; Alon, U.; Yahav, E. How Attentive Are Graph Attention Networks? In Proceedings of the Tenth International Conference on Learning Representations, Virtual, 25–29 April 2021. [Google Scholar] [CrossRef]
- Javaloy, A.; Sanchez-Martin, P.; Levi, A.; Valera, I. Learnable Graph Convolutional Attention Networks. Int. Conf. Learn. Represent. 2022, arXiv:2211.11853. [Google Scholar] [CrossRef]
- Duan, W.; Xuan, J.; Qiao, M.; Lu, J. Learning from the Dark: Boosting Graph Convolutional Neural Networks with Diverse Negative Samples. Proc. AAAI Conf. Artif. Intell. 2022, 36, 6550–6558. [Google Scholar] [CrossRef]
- Duan, W.; Xuan, J.; Qiao, M.; Lu, J. Graph Convolutional Neural Networks with Diverse Negative Samples via Decomposed Determinant Point Processes. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 18160–18171. [Google Scholar] [CrossRef] [PubMed]
- Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond Low-Frequency Information in Graph Convolutional Networks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 3950–3957. [Google Scholar] [CrossRef]
- Zhang, A.; Huang, J.; Li, P.; Zhang, K. Building Shortcuts between Distant Nodes with Biaffine Mapping for Graph Convolutional Networks. ACM Trans. Knowl. Discov. Data 2024, 18, 1–21. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, J.; Zhang, C.; Xiang, S. Graph Aggregate-Repel Network: Do Not Trust All Neighbors in Heterophilic Graphs. Neural Netw. 2024, 178, 106484. [Google Scholar] [CrossRef]
- Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Harutyunyan, H.; Alipourfard, N.; Lerman, K.; Steeg, G.V.; Galstyan, A. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. Int. Conf. Mach. Learn. 2019, 21–29. [Google Scholar] [CrossRef]
- Gong, K.; Song, X.; Li, W.; Wang, S. HN-GCCF: High-Order Neighbor-Enhanced Graph Convolutional Collaborative Filtering. Knowl. Based Syst. 2024, 283, 111122. [Google Scholar] [CrossRef]
- He, L.; Bai, L.; Yang, X.; Liang, Z.; Liang, J. Exploring the Role of Edge Distribution in Graph Convolutional Networks. Neural Netw. 2023, 168, 459–470. [Google Scholar] [CrossRef]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web. Stanford Digital Libraries Working Paper. 1999. Available online: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf (accessed on 20 February 2025).
- Chien, E.; Peng, J.; Li, P.; Milenkovic, O. Adaptive Universal Generalized PageRank Graph Neural Network. In Proceedings of the 9th International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.B. HAPGNN: Hop-Wise Attentive PageRank-Based Graph Neural Network. Inf. Sci. 2022, 613, 435–452. [Google Scholar] [CrossRef]
- Laishui, L.; Zhang, T.; Hu, P.; Bardou, D.; Dalal, S.; Zheng, Z.; Yu, G.; Wu, H. An Improved Gravity Centrality for Finding Important Nodes in Multi-Layer Networks Based on Multi-PageRank. Expert Syst. Appl. 2024, 238, 122171. [Google Scholar] [CrossRef]
- Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; Jegelka, S. Representation Learning on Graphs with Jumping Knowledge Networks. Int. Conf. Mach. Learn. 2018, 5449–5458. [Google Scholar] [CrossRef]
- Li, L.; Yang, W.; Bai, S.; Ma, Z. KNN-GNN: A Powerful Graph Neural Network Enhanced by Aggregating K-Nearest Neighbors in Common Subspace. Expert Syst. Appl. 2024, 253, 124217. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; Koutra, D. Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. Adv. Neural Inf. Process. Syst. NeurIPS 2020, 33, 7793–7804. [Google Scholar] [CrossRef]
- Li, X.; Zhu, R.; Cheng, Y.; Shan, C.; Luo, S.; Li, D.; Qian, W. Finding Global Homophily in Graph Neural Networks When Meeting Heterophily. In Proceedings of the 39th International Conference on Machine Learning, PMLR 2022, Baltimore, MA, USA, 17–23 July 2022; Volume 162, pp. 13242–13256. [Google Scholar] [CrossRef]
- McCallum, A.K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the Construction of Internet Portals with Machine Learning. Inf. Retr. 2000, 3, 127–163. [Google Scholar] [CrossRef]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008, 29, 93. [Google Scholar] [CrossRef]
- Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of Graph Neural Network Evaluation. 2019. Available online: https://arxiv.org/abs/1811.05868 (accessed on 20 February 2025).
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1–14. [Google Scholar] [CrossRef]
- Hamilton, W.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the NIPS ‘17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 4–9 December 2017; pp. 1025–1035. [Google Scholar] [CrossRef]
Input: Training graph data: ; |
: Mask of the nodes, |
: Label of the nodes, |
: Enhancement coefficient to set the number of enhanced edges |
: Generator for generating virtual minority class node embedding |
: Discriminator for determining the results of the generator |
: neural network for classifying node embedding results |
Output: Classification results for nodes in the test set |
Edge enhancement: |
1. |
2. |
3. |
4. |
Node embedding: |
5. for each epoch: |
6. |
7. |
8. update GCN parameters by minimizing Loss; |
9. end for |
Generate virtual node embedding: |
10. for each epoch: // |
11. |
12. update |
13. |
14. update |
15. end for |
16. |
Classification: |
17. |
Datasets | Cora | Citeseer | PubMed | Coauthor-Physics |
---|---|---|---|---|
Number of nodes | 2708 | 3327 | 19,717 | 34,493 |
Number of edges | 5278 | 4552 | 44,324 | 247,962 |
Edges/Nodes | 1.95 | 1.37 | 2.25 | 7.19 |
Number of classes | 7 | 6 | 3 | 5 |
Feature dimension | 1433 | 3703 | 500 | 8415 |
Ratio of the minority class | 6.65% | 7.94% | 20.8% | 7.98% |
Datasets | Cora | Citeseer | PubMed | Coauthor-Physics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | Recall | Precision | AUC | Recall | Precision | AUC | Recall | Precision | AUC | Recall | Precision | AUC |
GCN | 0.7000 | 0.9333 | 0.8478 | 0.1833 | 0.8462 | 0.5901 | 0.8283 | 0.8127 | 0.8885 | 0.9187 | 0.9669 | 0.9580 |
GraphSAGE | 0.6750 | 0.9000 | 0.8343 | 0.3000 | 0.6429 | 0.6419 | 0.8595 | 0.8524 | 0.9098 | 0.9261 | 0.9489 | 0.9609 |
GAT | 0.8250 | 0.9428 | 0.9103 | 0.2667 | 0.8000 | 0.6301 | 0.8139 | 0.8071 | 0.8808 | 0.9113 | 0.9390 | 0.9531 |
G-SMOTE | 0.7500 | 0.8823 | 0.8707 | 0.3500 | 0.7500 | 0.6694 | 0.8703 | 0.8410 | 0.9130 | 0.9224 | 0.9469 | 0.9590 |
DR-GCN | 0.8750 | 0.8974 | 0.9332 | 0.6833 | 0.4308 | 0.7035 | 0.8980 | 0.8184 | 0.9222 | 0.9445 | 0.9291 | 0.9692 |
RA-GCN | 0.8500 | 0.8947 | 0.9206 | 0.5806 | 0.5070 | 0.7621 | 0.8919 | 0.8219 | 0.9200 | 0.9409 | 0.9305 | 0.9674 |
BNE | 0.9000 | 0.8571 | 0.9435 | 0.7000 | 0.4576 | 0.7366 | 0.9112 | 0.8083 | 0.9265 | 0.9353 | 0.9388 | 0.9651 |
+Edges | 0.9000 | 0.9000 | 0.9457 | 0.4500 | 0.5000 | 0.7033 | 0.8727 | 0.8366 | 0.9135 | 0.9224 | 0.9469 | 0.9590 |
+Nodes | 0.8750 | 0.8750 | 0.9321 | 0.5667 | 0.3579 | 0.7342 | 0.8583 | 0.8573 | 0.9100 | 0.9279 | 0.9472 | 0.9618 |
Our method | 0.9250 | 0.9024 | 0.9582 | 0.7333 | 0.4800 | 0.7757 | 0.9087 | 0.8439 | 0.9318 | 0.9482 | 0.9310 | 0.9711 |
Datasets | Cora | Citeseer | PubMed | Coauthor-Physics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | Recall | Precision | AUC | Recall | Precision | AUC | Recall | Precision | AUC | Recall | Precision | AUC |
GCN | 6.80 × 10−11 | 2.03 × 10−3 | 4.24 × 10−9 | 1.00 × 10−15 | 3.41 × 10−13 | 1.06 × 10−10 | 9.56 × 10−8 | 1.21 × 10−3 | 3.65 × 10−5 | 5.74 × 10−7 | 6.67 × 10−7 | 2.36 × 10−6 |
GraphSAGE | 1.66 × 10−12 | 2.48 × 10−1 | 9.42 × 10−10 | 8.27 × 10−16 | 7.18 × 10−11 | 6.20 × 10−10 | 4.51 × 10−6 | 1.89 × 10−1 | 2.32 × 10−3 | 8.27 × 10−5 | 6.30 × 10−6 | 7.43 × 10−6 |
GAT | 8.98 × 10−8 | 4.94 × 10−4 | 8.68 × 10−6 | 1.24 × 10−14 | 1.89 × 10−12 | 1.19 × 10−9 | 1.38 × 10−8 | 2.79 × 10−5 | 4.07 × 10−7 | 3.82 × 10−7 | 6.17 × 10−2 | 3.46 × 10−6 |
G-SMOTE | 3.61 × 10−11 | 8.25 × 10−6 | 1.28 × 10−8 | 1.63 × 10−14 | 6.52 × 10−13 | 2.25 × 10−10 | 7.88 × 10−6 | 6.74 × 10−1 | 2.23 × 10−4 | 7.73 × 10−7 | 1.14 × 10−3 | 6.21 × 10−8 |
DR-GCN | 3.01 × 10−6 | 5.24 × 10−3 | 4.10 × 10−4 | 2.15 × 10−7 | 2.90 × 10−6 | 1.56 × 10−7 | 3.55 × 10−3 | 3.99 × 10−5 | 2.56 × 10−2 | 1.22 × 10−2 | 3.26 × 10−2 | 3.63 × 10−3 |
RA-GCN | 3.37 × 10−7 | 5.47 × 10−2 | 4.33 × 10−6 | 1.76 × 10−10 | 5.47 × 10−3 | 6.80 × 10−2 | 2.17 × 10−3 | 3.21 × 10−3 | 5.73 × 10−2 | 1.50 × 10−2 | 4.83 × 10−1 | 1.98 × 10−2 |
BNE | 5.67 × 10−3 | 2.20 × 10−5 | 4.90 × 10−3 | 3.28 × 10−4 | 1.44 × 10−3 | 1.14 × 10−5 | 7.27 × 10−1 | 4.24 × 10−6 | 1.11 × 10−2 | 5.66 × 10−3 | 1.72 × 10−2 | 1.22 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Lin, J.; Li, D. Edge and Node Enhancement Graph Convolutional Network: Imbalanced Graph Node Classification Method Based on Edge-Node Collaborative Enhancement. Mathematics 2025, 13, 1038. https://doi.org/10.3390/math13071038
Tian J, Lin J, Li D. Edge and Node Enhancement Graph Convolutional Network: Imbalanced Graph Node Classification Method Based on Edge-Node Collaborative Enhancement. Mathematics. 2025; 13(7):1038. https://doi.org/10.3390/math13071038
Chicago/Turabian StyleTian, Jiadong, Jiali Lin, and Dagang Li. 2025. "Edge and Node Enhancement Graph Convolutional Network: Imbalanced Graph Node Classification Method Based on Edge-Node Collaborative Enhancement" Mathematics 13, no. 7: 1038. https://doi.org/10.3390/math13071038
APA StyleTian, J., Lin, J., & Li, D. (2025). Edge and Node Enhancement Graph Convolutional Network: Imbalanced Graph Node Classification Method Based on Edge-Node Collaborative Enhancement. Mathematics, 13(7), 1038. https://doi.org/10.3390/math13071038