Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining
Abstract
:1. Introduction
2. Preliminary
2.1. Graph Mining
2.2. Large Language Model
3. Techniques of the LLMs Combined with GNNs
3.1. GNN-Driving-LLM
3.2. LLM-Driving-GNN
3.3. GNN-LLM-Co-Driving
3.4. The Comparison of the Significance of Embeddings
4. Summary and Discussion Analysis
4.1. Summary
4.2. Evaluation Metrics
4.2.1. GNN-Based Model Evaluation Metrics
4.2.2. LLM-Specific Evaluation Metrics
4.3. Discussion Analysis
5. Future Direction
5.1. Multimodal Graph Data Processing
5.2. Addressing the Hallucination Problem in Large Language Models
5.3. Enhancing the Capability to Solve Complex Graph Tasks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GdL | GNN-driving-LLM |
LdG | LLM-driving-GNN |
LGcd | GNN-LLM-co-driving |
GNN | Graph Neural Network |
GCN | Graph Convolutional Network |
GAT | Graph Attention Network |
HAN | Heterogeneous Graph Attention Network |
HetGNN | Heterogeneous Graph Neural Network |
LLM | Large Language Model |
NLP | Natural Language Processing |
GFMs | Graph Foundation Models |
GCN | Graph Convolutional Networks |
TAGs | Text-Attributed Graphs |
LM | Language Model |
GDL | Graph Description Language |
CoT | Chain-of-Thought |
KG | Knowledge Graph |
NMLM | Network Contextualized Masked Language Modeling |
MNP | Masked Node Prediction |
EM | Expectation Maximization |
TAHGs | Text-Attributed Heterogeneous Graphs |
References
- Nguyen, V.-H.; Sugiyama, K.; Nakov, P.; Kan, M.-Y. Fang: Leveraging social context for fake news detection using graph representation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, 19–23 October 2020. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. arXiv 2016, arXiv:1607.00653. [Google Scholar]
- Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. graph2vec: Learning distributed representations of graphs. arXiv 2017, arXiv:1707.05005. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907. [Google Scholar]
- Veli?kovi?, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2018, arXiv:1710.10903. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2018, arXiv:1706.02216. [Google Scholar]
- Wang, X.; Ji, H.; Shi, C.; Wang, B.; Cui, P.; Yu, P.; Ye, Y. Heterogeneous graph attention network. arXiv 2021, arXiv:1903.07293. [Google Scholar]
- Zhang, C.; Song, D.; Huang, C.; Swami, A.; Chawla, N.V. Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 793–803. [Google Scholar] [CrossRef]
- Manning, C.D. Human Language Understanding & Reasoning. Daedalus 2022, 151, 127–138. [Google Scholar] [CrossRef]
- Petroni, F.; Rockt?schel, T.; Lewis, P.; Bakhtin, A.; Wu, Y.; Miller, A.H.; Riedel, S. Language models as knowledge bases? arXiv 2019, arXiv:1909.01066. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. arXiv 2021, arXiv:2102.12092. [Google Scholar]
- Zhang, Z.; Li, H.; Zhang, Z.; Qin, Y.; Wang, X.; Zhu, W. Graph meets llms: Towards large graph models. arXiv 2023, arXiv:2308.14522. [Google Scholar]
- Chen, Z.; Mao, H.; Li, H.; Jin, W.; Wen, H.; Wei, X.; Wang, S.; Yin, D.; Fan, W.; Liu, H.; et al. Exploring the potential of large language models (llms) in learning on graphs. arXiv 2024, arXiv:2307.03393. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Lu, Z.; Chen, J.; Li, Y.; Zhang, M.; Bai, T.; Fang, Y.; Sun, L.; Yu, P.S.; et al. Towards graph foundation models: A survey and beyond. arXiv 2024, arXiv:2310.11829. [Google Scholar]
- Yang, L.; Zheng, J.; Wang, H.; Liu, Z.; Huang, Z.; Hong, S.; Zhang, W.; Cui, B. Individual and structural graph information bottlenecks for out-of-distribution generalization. arXiv 2023, arXiv:2306.15902. [Google Scholar] [CrossRef]
- Korshunov, A.; Beloborodov, I.; Buzun, N.; Avanesov, V.; Kuznetsov, S. Social network analysis: Methods and applications. Proc. Inst. Syst. Program. RAS 2014, 26, 439–456. [Google Scholar] [CrossRef]
- Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015, 16, 261–273. [Google Scholar] [CrossRef]
- Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 721–724. [Google Scholar]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, S.; Zhang, Y.; Dai, W.; Dong, L. Predicting the attributes of social network users using a graph-based machine learning method. Comput. Commun. 2016, 73, 3–11. [Google Scholar] [CrossRef]
- You, R.; Yao, S.; Mamitsuka, H.; Zhu, S. Deepgraphgo: Graph neural network for large-scale, multispecies protein function prediction. Bioinformatics 2021, 37, i262–i271. [Google Scholar] [CrossRef] [PubMed]
- Liben-Nowell, D.; Kleinberg, J. The link prediction problem for social networks. In Proceedings of the Twelfth International Conference on Information and Knowledge Management, New Orleans, LA, USA, 3–8 November 2003; pp. 556–559. [Google Scholar]
- Backstrom, L.; Leskovec, J. Supervised random walks: Predicting and recommending links in social networks. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 635–644. [Google Scholar]
- Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 5171–5181. [Google Scholar]
- Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64. [Google Scholar] [CrossRef]
- Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 265–298. [Google Scholar] [CrossRef]
- Guo, L.; Dai, Q. Graph clustering via variational graph embedding. Pattern Recognit. 2022, 122, 108334. [Google Scholar] [CrossRef]
- Wu, H.; Liang, B.; Chen, Z.; Zhang, H. Multisimnenc: A network representation learning-based module identification method by network embedding and clustering. Comput. Biol. Med. 2023, 156, 106703. [Google Scholar] [CrossRef]
- Tian, Y.; Mceachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. Saga: A subgraph matching tool for biological graphs. Bioinformatics 2007, 23, 232–239. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Bedi, P.; Sharma, C. Community detection in social networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2016, 6, 115–135. [Google Scholar]
- Inokuchi, A.; Washio, T.; Motoda, H. An apriori-based algorithm for mining frequent substructures from graph data. In Principles of Data Mining and Knowledge Discovery: 4th European Conference, Lyon, France, 13–16 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 13–23. [Google Scholar]
- Borgelt, C.; Berthold, M.R. Mining molecular fragments: Finding relevant substructures of molecules. In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 51–58. [Google Scholar]
- Bronstein, M.M.; Bruna, J.; Cohen, T.; Veli?kovi?, P. Geometric deep learning: Grids groups graphs geodesics and gauges. arXiv 2021, arXiv:2104.13478. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. 2018. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- OpenAI; Achiam, J.; Adler, S.; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; et al. Gpt-4 technical report. arXiv 2024, arXiv:2303.08774. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv 2020, arXiv:1906.08237. [Google Scholar]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv 2019, arXiv:1910.13461. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. arXiv 2020, arXiv:2002.05709. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. arXiv 2021, arXiv:2103.00020. [Google Scholar]
- McAuley, J.; Leskovec, J. Hidden factors and hidden topics: Understanding rating dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 165–172. [Google Scholar]
- Granovetter, M.S. The strength of weak ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar]
- Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 7370–7377. [Google Scholar]
- Price, D.J.D.S. Networks of scientific papers: The pattern of bibliographic references indicates the nature of the scientific research front. Science 1965, 149, 510–515. [Google Scholar] [PubMed]
- Yang, Z.; Cohen, W.W.; Salakhutdinov, R. Revisiting semi-supervised learning with graph embeddings. arXiv 2016, arXiv:1603.08861. [Google Scholar]
- Li, C.; Pang, B.; Liu, Y.; Sun, H.; Liu, Z.; Xie, X.; Yang, T.; Cui, Y.; Zhang, L.; Zhang, Q. Adsgnn: Behavior-graph augmented relevance modeling in sponsored search. arXiv 2021, arXiv:2104.12080. [Google Scholar]
- Zhu, J.; Cui, Y.; Liu, Y.; Sun, H.; Li, X.; Pelger, M.; Yang, T.; Zhang, L.; Zhang, R.; Zhao, H. Textgnn: Improving text encoder via graph neural network in sponsored search. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021. [Google Scholar] [CrossRef]
- He, X.; Bresson, X.; Laurent, T.; Perold, A.; LeCun, Y.; Hooi, B. Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning. arXiv 2024, arXiv:2305.19523. [Google Scholar]
- Wei, W.; Ren, X.; Tang, J.; Wang, Q.; Su, L.; Cheng, S.; Wang, J.; Yin, D.; Huang, C. Llmrec: Large language models with graph augmentation for recommendation. arXiv 2024, arXiv:2311.00423. [Google Scholar]
- Ren, X.; Wei, W.; Xia, L.; Su, L.; Cheng, S.; Wang, J.; Yin, D.; Huang, C. Representation learning with large language models for recommendation. In Proceedings of the ACM on Web Conference 2024, Singapore, 13–17 May 2024. [Google Scholar] [CrossRef]
- Huang, Q.; Ren, H.; Chen, P.; Kr?manc, G.; Zeng, D.; Liang, P.; Leskovec, J. Prodigy: Enabling in-context learning over graphs. arXiv 2023, arXiv:2305.12600. [Google Scholar]
- Sun, X.; Cheng, H.; Li, J.; Liu, B.; Guan, J. All in one: Multi-task prompting for graph neural networks. arXiv 2023, arXiv:2307.01504. [Google Scholar]
- Liu, H.; Feng, J.; Kong, L.; Liang, N.; Tao, D.; Chen, Y.; Zhang, M. One for all: Towards training one graph model for all classification tasks. arXiv 2024, arXiv:2310.00149. [Google Scholar]
- Xie, H.; Zheng, D.; Ma, J.; Zhang, H.; Ioannidis, V.N.; Song, X.; Ping, Q.; Wang, S.; Yang, C.; Xu, Y.; et al. Graph-aware language model pre-training on a large graph corpus can help multiple graph applications. arXiv 2023, arXiv:2306.02592. [Google Scholar]
- Xue, R.; Shen, X.; Yu, R.; Liu, X. Efficient large language models fine-tuning on graphs. arXiv 2023, arXiv:2312.04737. [Google Scholar]
- Guo, Z.; Xia, L.; Yu, Y.; Wang, Y.; Yang, Z.; Wei, W.; Pang, L.; Chua, T.-S.; Huang, C. Graphedit: Large language models for graph structure learning. arXiv 2024, arXiv:2402.15183. [Google Scholar]
- Chen, Z.; Mao, H.; Wen, H.; Han, H.; Jin, W.; Zhang, H.; Liu, H.; Tang, J. Label-free node classification on graphs with large language models (llms). arXiv 2024, arXiv:2310.04668. [Google Scholar]
- Yu, J.; Ren, Y.; Gong, C.; Tan, J.; Li, X.; Zhang, X. Leveraging large language models for node generation in few-shot learning on text-attributed graphs. arXiv 2024, arXiv:2310.09872. [Google Scholar]
- Xia, L.; Kao, B.; Huang, C. Opengraph: Towards open graph foundation models. arXiv 2024, arXiv:2403.01121. [Google Scholar]
- Liu, J.; Liu, C.; Zhou, P.; Lv, R.; Zhou, K.; Zhang, Y. Is chatgpt a good recommender? A preliminary study. arXiv 2023, arXiv:2304.10149. [Google Scholar]
- Creswell, A.; Shanahan, M.; Higgins, I. Selection-inference: Exploiting large language models for interpretable logical reasoning. arXiv 2022, arXiv:2205.09712. [Google Scholar]
- Ji, Y.; Gong, Y.; Peng, Y.; Ni, C.; Sun, P.; Pan, D.; Ma, B.; Li, X. Exploring chatgpt’s ability to rank content: A preliminary study on consistency with human preferences. arXiv 2023, arXiv:2303.07610. [Google Scholar]
- Wang, H.; Feng, S.; He, T.; Tan, Z.; Han, X.; Tsvetkov, Y. Can language models solve graph problems in natural language? arXiv 2024, arXiv:2305.10037. [Google Scholar]
- Huang, J.; Zhang, X.; Mei, Q.; Ma, J. Can llms effectively leverage graph structural information through prompts, and why? arXiv 2024, arXiv:2309.16595. [Google Scholar]
- Hu, Y.; Zhang, Z.; Zhao, L. Beyond text: A deep dive into large language models’ ability on understanding graph data. arXiv 2023, arXiv:2310.04944. [Google Scholar]
- Fatemi, B.; Halcrow, J.; Perozzi, B. Talk like a graph: Encoding graphs for large language models. arXiv 2023, arXiv:2310.04560. [Google Scholar]
- Guo, J.; Du, L.; Liu, H.; Zhou, M.; He, X.; Han, S. Gpt4graph: Can large language models understand graph structured data ? an empirical evaluation and benchmarking. arXiv 2023, arXiv:2305.15066. [Google Scholar]
- Brandes, U.; Eiglsperger, M.; Lerner, J.; Pich, C. Graph markup language (GraphML). 2013. [Google Scholar]
- Zhao, J.; Zhuo, L.; Shen, Y.; Qu, M.; Liu, K.; Bronstein, M.; Zhu, Z.; Tang, J. Graphtext: Graph reasoning in text space. arXiv 2023, arXiv:2310.01089. [Google Scholar]
- Liu, C.; Wu, B. Evaluating large language models on graphs: Performance insights and comparative analysis. arXiv 2023, arXiv:2308.11224. [Google Scholar]
- Tang, J.; Yang, Y.; Wei, W.; Shi, L.; Su, L.; Cheng, S.; Yin, D.; Huang, C. Graphgpt: Graph instruction tuning for large language models. arXiv 2024, arXiv:2310.13023. [Google Scholar]
- Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.; Chi, E.; Le, Q.V.; Zhou, D. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 2022, 35, 24824–24837. [Google Scholar]
- Cao, H.; Liu, Z.; Lu, X.; Yao, Y.; Li, Y. Instructmol: Multi-modal integration for building a versatile and reliable molecular assistant in drug discovery. arXiv 2023, arXiv:2311.16208. [Google Scholar]
- Qin, Y.; Wang, X.; Zhang, Z.; Zhu, W. Disentangled representation learning with large language models for text-attributed graphs. arXiv 2024, arXiv:2310.18152. [Google Scholar]
- Zhang, M.; Sun, M.; Wang, P.; Fan, S.; Mo, Y.; Xu, X.; Liu, H.; Yang, C.; Shi, C. Graphtranslator: Aligning graph model to large language model for open-ended tasks. arXiv 2024, arXiv:2402.07197. [Google Scholar]
- Tang, J.; Yang, Y.; Wei, W.; Shi, L.; Xia, L.; Yin, D.; Huang, C. Higpt: Heterogeneous graph language model. arXiv 2024, arXiv:2402.16024. [Google Scholar]
- Zhao, H.; Liu, S.; Ma, C.; Xu, H.; Fu, J.; Deng, Z.-H.; Kong, L.; Liu, Q. Gimlet: A unified graph-text model for instruction-based molecule zero-shot learning. arXiv 2023, arXiv:2306.13089. [Google Scholar]
- Tan, Y.; Lv, H.; Huang, X.; Zhang, J.; Wang, S.; Yang, C. Musegraph: Graph-oriented instruction tuning of large language models for generic graph mining. arXiv 2024, arXiv:2403.04780. [Google Scholar]
- Ye, R.; Zhang, C.; Wang, R.; Xu, S.; Zhang, Y. Language is all a graph needs. arXiv 2024, arXiv:2308.07134. [Google Scholar]
- Chai, Z.; Zhang, T.; Wu, L.; Han, K.; Hu, X.; Huang, X.; Yang, Y. Graphllm: Boosting graph reasoning ability of large language model. arXiv 2023, arXiv:2310.05845. [Google Scholar]
- Zhang, J. Graph-toolformer: To empower llms with graph reasoning ability via prompt augmented by chatgpt. arXiv 2023, arXiv:2304.11116. [Google Scholar]
- Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. Available online: https://github.com/kingoflolz/mesh-transformer-jax (accessed on 5 October 2024).
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Wang, H.; Gao, Y.; Zheng, X.; Zhang, P.; Chen, H.; Bu, J.; Yu, P.S. Graph neural architecture search with gpt-4. arXiv 2024, arXiv:2310.01436. [Google Scholar]
- Luo, L.; Ju, J.; Xiong, B.; Li, Y.-F.; Haffari, G.; Pan, S. Chatrule: Mining logical rules with large language models for knowledge graph reasoning. arXiv 2024, arXiv:2309.01538. [Google Scholar]
- Tian, Y.; Song, H.; Wang, Z.; Wang, H.; Hu, Z.; Wang, F.; Chawla, N.V.; Xu, P. Graph neural prompting with large language models. arXiv 2023, arXiv:2309.15427. [Google Scholar]
- Yang, J.; Liu, Z.; Xiao, S.; Li, C.; Lian, D.; Agrawal, S.; Singh, A.; Sun, G.; Xie, X. Graphformers: Gnn-nested transformers for representation learning on textual graph. arXiv 2023, arXiv:2105.02605. [Google Scholar]
- Jin, B.; Zhang, W.; Zhang, Y.; Meng, Y.; Zhang, X.; Zhu, Q.; Han, J. Patton: Language model pretraining on text-rich networks. arXiv 2023, arXiv:2305.12268. [Google Scholar]
- Zhao, J.; Qu, M.; Li, C.; Yan, H.; Liu, Q.; Li, R.; Xie, X.; Tang, J. Learning on large-scale text-attributed graphs via variational inference. arXiv 2023, arXiv:2210.14709. [Google Scholar]
- Zhang, X.; Bosselut, A.; Yasunaga, M.; Ren, H.; Liang, P.; Manning, C.D.; Leskovec, J. Greaselm: Graph reasoning enhanced language models for question answering. arXiv 2022, arXiv:2201.08860. [Google Scholar]
- Edwards, C.; Zhai, C.; Ji, H. Text2Mol: Cross-modal molecule retrieval with natural language queries. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Virtual Event, 7–11 November 2021; pp. 595–607. [Google Scholar]
- Beltagy, I.; Lo, K.; Cohan, A. Scibert: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676. [Google Scholar]
- Liu, S.; Nie, W.; Wang, C.; Lu, J.; Qiao, Z.; Liu, L.; Tang, J.; Xiao, C.; Anandkumar, A. Multi-modal molecule structure-text model for text-based retrieval and editing. arXiv 2024, arXiv:2212.10789. [Google Scholar]
- Seidl, P.; Vall, A.; Hochreiter, S.; Klambauer, G. Enhancing activity prediction models in drug discovery with the ability to understand human language. arXiv 2023, arXiv:2303.03363. [Google Scholar]
- Brannon, W.; Kang, W.; Fulay, S.; Jiang, H.; Roy, B.; Roy, D.; Kabbara, J. Congrat: Self-supervised contrastive pretraining for joint graph and text embeddings. arXiv 2024, arXiv:2305.14321. [Google Scholar]
- Wen, Z.; Fang, Y. Prompt tuning on graph-augmented low-resource text classification. arXiv 2024, arXiv:2307.10230. [Google Scholar]
- Li, Y.; Ding, K.; Lee, K. Grenade: Graph-centric language model for self-supervised representation learning on text-attributed graphs. arXiv 2023, arXiv:2310.15109. [Google Scholar]
- You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. arXiv 2021, arXiv:2010.13902. [Google Scholar]
- Mavromatis, C.; Ioannidis, V.N.; Wang, S.; Zheng, D.; Adeshina, S.; Ma, J.; Zhao, H.; Faloutsos, C.; Karypis, G. Train your own gnn teacher: Graph-aware distillation on textual graphs. arXiv 2023, arXiv:2304.10668. [Google Scholar]
- Zou, T.; Yu, L.; Huang, Y.; Sun, L.; Du, B. Pretraining language models with text-attributed heterogeneous graphs. arXiv 2023, arXiv:2310.12580. [Google Scholar]
- Yu, L.; Sun, L.; Du, B.; Liu, C.; Lv, W.; Xiong, H. Heterogeneous graph representation learning with relation awareness. IEEE Trans. Knowl. Data Eng. 2022, 35, 5935–5947. [Google Scholar] [CrossRef]
- Huang, X.; Han, K.; Yang, Y.; Bao, D.; Tao, Q.; Chai, Z.; Zhu, Q. Can gnn be good adapter for llms? arXiv 2024, arXiv:2402.12984. [Google Scholar]
- Zhu, Y.; Wang, Y.; Shi, H.; Tang, S. Efficient tuning and inference for large language models on textual graphs. arXiv 2024, arXiv:2401.15569. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318. [Google Scholar]
- Levenshtein, V.I. Binary codes capable of correcting spurious insertions and deletions of ones. Probl. Inf. Transm. 1965, 1, 8–17. [Google Scholar]
- Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. Bertscore: Evaluating text generation with bert. arXiv 2019, arXiv:1904.09675. [Google Scholar]
- Shen, C.; Cheng, L.; Nguyen, X.-P.; You, Y.; Bing, L. Large language models are not yet human-level evaluators for abstractive summarization. arXiv 2023, arXiv:2305.13091. [Google Scholar]
- Li, W.; Xiao, X.; Liu, J.; Wu, H.; Wang, H.; Du, J. Leveraging graph to improve abstractive multi-document summarization. arXiv 2020, arXiv:2005.10043. [Google Scholar]
- Liu, Y.; Iter, D.; Xu, Y.; Wang, S.; Xu, R.; Zhu, C. G-eval: Nlg evaluation using gpt-4 with better human alignment. arXiv 2023, arXiv:2303.16634. [Google Scholar]
- Wang, P.; Li, L.; Chen, L.; Cai, Z.; Zhu, D.; Lin, B.; Cao, Y.; Liu, Q.; Liu, T.; Sui, Z. Large language models are not fair evaluators. arXiv 2023, arXiv:2305.17926. [Google Scholar]
- Vasilyev, O.; Dharnidharka, V.; Bohannon, J. Fill in the blanc: Human-free quality estimation of document summaries. arXiv 2020, arXiv:2002.09836. [Google Scholar]
- Laban, P.; Schnabel, T.; Bennett, P.N.; Hearst, M.A. Summac: Re-visiting nli-based models for inconsistency detection in summarization. Trans. Assoc. Comput. Linguist. 2022, 10, 163–177. [Google Scholar]
- Goyal, T.; Durrett, G. Evaluating factuality in generation with dependency-level entailment. arXiv 2020, arXiv:2010.05478. [Google Scholar]
- Wu, S.; Fei, H.; Qu, L.; Ji, W.; Chua, T.-S. Next-gpt: Any-to-any multimodal llm. arXiv 2024, arXiv:2309.05519. [Google Scholar]
- Liu, H.; Li, C.; Wu, Q.; Lee, Y.J. Visual instruction tuning. arXiv 2023, arXiv:2304.08485. [Google Scholar]
- Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y.; et al. Siren’s song in the ai ocean: A survey on hallucination in large language models. arXiv 2023, arXiv:2309.01219. [Google Scholar]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.T.; Rockt?schel, T.; et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. arXiv 2021, arXiv:2005.11401. [Google Scholar]
- Yao, Y.; Wang, X.; Zhang, Z.; Qin, Y.; Zhang, Z.; Chu, X.; Yang, Y.; Zhu, W.; Mei, H. Exploring the potential of large language models in graph generation. arXiv 2024, arXiv:2403.14358. [Google Scholar]
- Huang, X.; Zhang, J.; Li, D.; Li, P. Knowledge graph embedding based question answering. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 105–113. [Google Scholar]
- Peng, C.; Xia, F.; Naseriparsa, M.; Osborne, F. Knowledge graphs: Opportunities and challenges. arXiv 2023, arXiv:2303.13948. [Google Scholar]
Method Category | LLM Embedding Role | GNN Embedding Role | Performance Impact | Interoperability Mechanism |
---|---|---|---|---|
GNN-driving-LLM | Generates semantically enhanced text embeddings, such as node descriptions and knowledge entities, to supplement the semantic information missing from the original features. | Aggregates structural information through message passing and preserves topological characteristics. | There are varying degrees of improvement in different downstream tasks. For instance, the accuracy of node classification tasks has increased by up to [66], while the ROC-AUC of link prediction has seen an increase of up to [65]. | Achieving dimensional compatibility between text embeddings and structural embeddings by jointly aligning the embedding space, such as cross-modal pooling. |
LLM-driving-GNN | Directly outputs task prediction results (such as node labels, relationship reasoning), avoiding the limitations of traditional GNNs classifiers. | Only acts as a structural feature extractor and does not participate in the final decision. | Leads to a more comprehensive understanding and enhanced performance. For example, in the graph-to-text task, the performance gains of MuseGraph [89] over GNN-based baselines range from 1.02% (achieved in METEOR on WebNLG) to 57.89% (achieved in BLEU-4 on AGENDA). | Encode the graph structure into a serialized input that can be understood by LLMs through prompt engineering, such as Graph Neural Prompting [97]. |
GNN-LLM-co-driving | Enhances semantic understanding and context information processing in the graph structure learning process by providing interpretable semantic representations and deep semantic features for graph data. | Generates constrained topological embeddings to provide rich structural information through deep modeling. Aggregates graph structures to help LLMs generate semantically deep feature representations in complex graph structures. | Encoding and alignment become much more efficient than ever. For example, G2P2 achieves 2.1∼18.8x speedups against baselines [107]. | Design domain projectors to unify embedding distribution or interact with GNNs and LLMs. In the latter approach, nodes exchange information at each layer to facilitate deep integration of structured data and text data. |
Model | Architecture | Graph Data | |||||
---|---|---|---|---|---|---|---|
LLMs | GNNs | Finetune | Predictor | Dataset Type | Task | ||
GNN-driving-LLM | LLMRec [60] | ChatGPT | LightGCN | × | GNN | General | Recommendation |
RLMRec [61] | ChatGPT, text-embedding-ada-002 | LightGCN | ✓ | GNN | General | Recommendation | |
TAPE [59] | ChatGPT, Llama2 | RevGAT | × | GNN | TAGs | Node | |
PRODIGY [62] | RoBERTa, MPNet | GCN, GAT | ✓ | GNN | TAGs | Node | |
ALL-in-one [63] | GPT-3.5, DeBERTa | RevGAT | ✓ | GNN/LLM | TAGs | Node | |
OFA [64] | llama2, e5-large-v2 | R-GCN | × | GNN | TAGs | Node, Link, Graph | |
GaLM [65] | BERT | RGCN, RGAT | ✓ | GNN | heterogeneous | Node, Link, edge classification | |
LEADING [66] | BERT, DeBERTa | GCN, GAT | ✓ | GNN | TAGs | Node | |
AdsGNN [57] | BERT | GAT | ✓ | GNN | Heterogeneous | Relevance Prediction, AD recommendation | |
TextGNN [58] | BERT | GAT | ✓ | GNN | Heterogeneous | Relevance Prediction, AD recommendation | |
GraphEdit [67] | Vicuna-v1.5 | GCN | ✓ | Edge Predictor | TAGs | Node, Graph, edge classification | |
LLM4NG [69] | ChatGPT | GCN, GAT | × | GNN | TAGs | Node | |
LLM-GNN [68] | gpt-3.5-turbo-0613 | GCN | × | GNN | TAGs | Node | |
OpenGraph [70] | GPT-4 | Scalable Graph Transformer | × | Graph Transformer | TAGs, Heterogeneous | Node, Link | |
LLM-driving-GNN | Fatemi et al. [77] | PaLM/PaLM 2 | - | × | LLM | Synthetic | Graph |
GPT4Graph [78] | GPT-3 | - | × | LLM | Synthetic, KG | Structural and Semantic Understanding Tasks | |
GraphText [80] | GPT-4 | - | × | LLM | General, TAGs | Node | |
Liu et al. [81] | GPT, CalderaAI/30B-Lazarus, et al. | - | × | LLM | Synthetic | Graph Reasoning | |
GraphGPT [82] | Vicuna | Graph Transformer | ✓ | LLM | TAGs | Node, Link, Graph Match | |
MoleculeSTM [84] | Vicuna-7B | GIN | ✓ | LLM | TAGs | Graph | |
DGTL [85] | LLama-2 | GCN, RGAT | ✓ | LLM | TAGs | Node | |
graphtranslator [86] | ChatGLM2-6B | GraphSAGE | × | LLM | TAGs | Node, KG Question Answering | |
HiGPT [87] | GPT-3.5 | HetGNN, HAN, HGT | × | LLM | Heterogeneous | Node, Graph, Relation Prediction | |
GIMLET [88] | T5 | - | ✓ | LLM | Synthetic | Molecular Property Prediction | |
MuseGraph [89] | GPT-4 | - | ✓ | LLM | General | Node, Link | |
InstructGLM [90] | T5, Llama-7b | - | ✓ | LLM | TAGs | Node, Link | |
GraphLLM [91] | LLaMA 2 | Graph Transformer | ✓ | LLM | KG | Graph Reasoning | |
Graph-ToolFormer [92] | GPT-J | Graph-Bert, SEG-Bert | ✓ | LLM | General, Synthetic, TAGs | Graph Reasoning | |
GPT4GNAS [95] | GPT-4 | GCN, GAT et al. | × | LLM | General | Graph Neural Architecture Search | |
ChatRule [96] | ChatGPT | - | × | LLM | KG | KG Reasoning | |
GNP [97] | FLAN-T5 | GAT | ✓ | LLM | KG | Commonsense and Biomedical Reasoning | |
GNN-LLM-co-driving | GraphFormers [98] | UniLM-base | GNN Components | ✓ | GNN, LLM | TAGs | Link |
PATTON [99] | BERT, SciBERT | GraphFormers | ✓ | LLM | Heterogeneous | Node, Retrieval, Re-ranking for Link Prediction | |
GLEM [100] | DeBERTa | RevGAT | ✓ | GNN, LLM | TAGs | Node | |
GREASELM [101] | RoBERTa-Large, AristoRoBERTa, SapBERT | GAT | ✓ | GNN, LLM | KG | Multiple Choice Question Answering | |
Text2Mol [102] | SciBERT | GCN | ✓ | GNN, LLM | General | Cross-modal Information Retrieval | |
MoleculeSTM [104] | SciBERT | GIN | ✓ | GNN, LLM | TAGs | Retrieval, Molecular Editing | |
CLAMP [105] | BioBERT, Sentence-T5, KV-PLM, etc. | GCN, GIN | ✓ | GNN, LLM | TAGs | Bioactivity Prediction | |
ConGraT [106] | DistilGPT2, all-mpnet-base-v2 | GAT | ✓ | GNN, LLM | General | Representation Learning | |
G2P2 [107] | BERT | GCN | ✓ | GNN, LLM | General | Text Classification | |
GRENADE [108] | BERT | SAGE, RevGAT-KD, etc. | ✓ | GNN, PLM | TAGs | Node, Link | |
GraD [110] | BERT, SciBERT | GraphSAGE | ✓ | LLM | TAGs, Heterogeneous | Node | |
THLM [111] | BERT | R-HGNN | ✓ | LLM | TAHGs | Node, Link | |
GraphAdapter [113] | Llama 2, RoBERTa, GPT-2 | GraphSAGE | × | GNN, LLM | TAGs | Node | |
ENGINE [114] | LLaMA2-7B, e5-large | GCN, SAGE, GAT | × | GNN, LLM | TAGs | Node |
Models | Input | Output | Parameter | Loss Function | |
---|---|---|---|---|---|
GdL | TAPE [59] | Lables y | LM: ; GNN: | ||
LLMRec [60] | ; Node Information F | ||||
RLMRec [61] | User Collection U; Text Information ; Item Collection V; Text Information | ||||
ALL-in-one [63] | , | Prompt Graph: | |||
TextGNN [58] | Query Text Q; Keyword Text K; Click Graph | Tens of Millions | |||
LdG | Fatemi et al. [77] | G = (V, E), Query Q | Thousands | ||
GPT4Graph [78] | , Query Text Q | Answer A | - | - | |
GraphGPT [82] | Text Sequence | 1.3B | |||
InstructGLM [90] | Task Instruction P; Graph Structure Description I; Query Q | Lables y | Flan-T5-base: Flan-T5-large: Llama-7b: | ||
GLcd | GREASELM [101] | Natural Language Question c; Question q; Candidate Answer A; Knowledge Graph | LM: ; GNN: ; MInt: | ||
GLEM [100] | LM: ; GNN: | LM: ; GNN: | E-step: ; M-step: | ||
GraphFormers [98] | Node Set x and Its Text Sequence; Adjacency Relationship | Central Node Embedding | |||
Text2Mol [102] | Natural Language Description T Molecular Structure | Similarity Score | MLP: ; GCN: ; Cross-modal Attention Model: |
Models | LLMs | GNNs | Environment | Datasets | Ratio * | Code | |
---|---|---|---|---|---|---|---|
Node Classification | TAPE-GNN- [59] | DeBERTa-base | RevGAT | 4× Nvidia RTX A5000 24 GB GPUs | ogbn-arxiv | 77.50 ± 0.12 | https://github.com/XiaoxinHe/TAPE, (accessed on 21 Novermber 2024) |
GLEM-GNN [100] | DeBERTa-base | RevGAT | 4× Nvidia RTX A5000 24 GB GPUs | ogbn-arxiv | 76.97 ± 0.19 | https://github.com/AndyJZhao/GLEM, (accessed on 21 Novermber 2024) | |
OFA-llama2-13b [64] | llama2-13b | R-GCN | - | ogbn-arxiv | 77.51 ± 0.17 | https://github.com/LechengKong/OneForAll, (accessed on 21 Novermber 2024) | |
InstructGLM [90] | Llama-7b | - | 4× 40G Nvidia A100 GPUs | ogbn-arxiv | 75.70 ± 0.12 | https://github.com/Graphlet-AI/llm-graph-ai, (accessed on 21 Novermber 2024) | |
GraphGPT-7B-v1.5-stage2 [82] | Vicuna | Graph Transformer | 4× 40G Nvidia A100 GPUs | ogbn-arxiv | 75.11 | https://github.com/HKUDS/GraphGPT, (accessed on 21 Novermber 2024) | |
GRENADE [108] | BERT | RevGAT-KD | - | ogbn-arxiv | 76.21 ± 0.17 | https://github.com/bigheiniu/GRENADE, (accessed on 21 Novermber 2024) | |
GraDBERT [110] | BERT | GraphSAGE | - | ogbn-arxiv | 75.05 ± 0.11 | https://github.com/cmavro/GRAD, (accessed on 21 Novermber 2024) | |
GraphAdapter [113] | Llama 2 | GraphSAGE | Nvidia A800 80 GB GPU | Ogbn-arxiv | 77.07 ± 0.15 | https://github.com/hxttkl/GraphAdapter, (accessed on 21 Novermber 2024) | |
ENGINE [114] | LLaMA2-7B | GCN, SAGE, GAT | 6× Nvidia RTX 3090 GPUs | Ogbn-arxiv | 76.02 ± 0.29 | https://github.com/ZhuYun97/ENGINE, (accessed on 21 Novermber 2024) | |
PATTON [99] | BERT, SciBERT | GraphFormers | 4× Nvidia A6000 GPUs | Amazon-Sports | 78.60 ± 0.15 | https://github.com/PeterGriffinJin/Patton, (accessed on 21 Novermber 2024) | |
THLM [111] | BERT | R-HGNN | 4× Nvidia RTX 3090 GPUs | GoodReads | 81.57 | https://github.com/Hope-Rita/THLM, (accessed on 21 Novermber 2024) | |
Recommendation | LLMRec [60] | gpt-3.5-turbo, text-embedding-ada-002 | LightGCN | Nvidia RTX 3090 GPU | MovieLens | 36.43 | https://github.com/HKUDS/LLMRec, (accessed on 23 Novermber 2024) |
RLMRec [61] | gpt-3.5-turbo, text-embedding-ada-002 | LightGCN | Nvidia RTX 3090 GPU | Amazon-book | 14.83 | https://github.com/HKUDS/RLMRec, (accessed on 23 Novermber 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Liu, Z.; Wen, X.; Zhang, Y.; Ai, W. Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining. Mathematics 2025, 13, 1147. https://doi.org/10.3390/math13071147
You Y, Liu Z, Wen X, Zhang Y, Ai W. Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining. Mathematics. 2025; 13(7):1147. https://doi.org/10.3390/math13071147
Chicago/Turabian StyleYou, Yuxin, Zhen Liu, Xiangchao Wen, Yongtao Zhang, and Wei Ai. 2025. "Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining" Mathematics 13, no. 7: 1147. https://doi.org/10.3390/math13071147
APA StyleYou, Y., Liu, Z., Wen, X., Zhang, Y., & Ai, W. (2025). Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining. Mathematics, 13(7), 1147. https://doi.org/10.3390/math13071147