Prime Strictly Concentric Magic Squares of Odd Order
Abstract
:1. Introduction
2. Definitions and Notation
3. Properties of an SCMS
4. Minimum PSCMS of Order 5
Construction of Minimum PSCMS of Order 5
Algorithm 1 Algorithm to form a PSCMS of order 3 |
|
Algorithm 2 Algorithm to form a PSCMS of order 5 |
|
5. Enumeration of Minimum PSCMS of Order 5
5.1. Enumeration with Magic Centre Subsquare 1
- (i)
- Three non-equivalent PSCMS of type 1A;
- (ii)
- Five non-equivalent PSCMS of type 1B;
- (iii)
- Three non-equivalent PSCMS of type 1C;
- (iv)
- Two non-equivalent PSCMS of type 1D;
- (v)
- Three non-equivalent PSCMS of type 1E;
- (vi)
- Three non-equivalent PSCMS of type 1F.
5.2. Enumeration with Magic Centre Subsquare 2
- (i)
- Two non-equivalent PSCMS of type 2A;
- (ii)
- Three non-equivalent PSCMS of type 2B;
- (iii)
- Two non-equivalent PSCMS of type 2C;
- (iv)
- Two non-equivalent PSCMS of type 2D;
- (v)
- One PSCMS, modulo the action of , of type 2E;
- (vi)
- One PSCMS, modulo the action of , of type 2F;
- (vii)
- Two non-equivalent PSCMS of type 2G;
- (viii)
- Two non-equivalent PSCMS of type 2H;
- (ix)
- One PSCMS, modulo the action of , of type 2I.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
NMS | Normal Magic Square |
SCMS | Strictly Concentric Magic Square |
PSCMS | Prime Strictly Concentric Magic Square |
References
- Ahmed, M.; Loera, J.D.; Hemmecke, R. Polyhedral Cones of Magic Cubes and Squares. In Discrete and Computational Geometry; Springer: Berlin/Heidelberg, Germany, 2003; pp. 25–41. [Google Scholar]
- Andrews, W.S. Magic Squares and Cubes, 2nd ed.; Dover: New York, NY, USA, 1960. [Google Scholar]
- Henrich, C.J. Magic Squares and Linear Algebra. Am. Math. Mon. 1991, 98, 481–488. [Google Scholar] [CrossRef]
- Beck, M.; Herick, A.V. Enumeration of 4 × 4 Magic Squares. Math. Comput. 2011, 80, 617–621. [Google Scholar] [CrossRef]
- Ollerenshaw, K.; Bondi, H. Magic Squares of Order Four. Philos. Trans. R. Soc. Lond. 1982, 306, 443–494. [Google Scholar]
- Pinn, K.; Wieczerkowski, C. Number of Magic Squares from Parallel Tempering Monte Carlo. Int. J. Mod. Phys. Comput. Phys. Phys. Comput. 1998, 9, 541–546. [Google Scholar] [CrossRef]
- Lok, Y.W.; Chin, K.Y. An Application of Magic Squares in Cryptography. 2018. Available online: https://www.academia.edu/37853557/An_Application_of_Magic_Squares_in_Cryptography (accessed on 8 April 2025).
- Rani, N.; Mishra, V. Application of Magic Squares in Cryptography. In Proceedings in Adaptation, Learning and Optimization, Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021); Sharma, H., Vyas, V.K., Pandey, R.K., Prasad, M., Eds.; Springer: Cham, Switzerland, 2021; Volume 15. [Google Scholar] [CrossRef]
- Andrews, W.S.; Sayles, H.A. Magic Squares made with Prime Numbers to have the lowest possible summations. Monist 1913, 23, 623–630. [Google Scholar]
- Andrews, W.S. Magic squares (conclusion). Monist 1905, 15, 555–586. [Google Scholar] [CrossRef]
- Das, M.K. On concentric magic squares and magic squares of order 4n + 2. Int. J. Math. Educ. Sci. Technol. 1991, 22, 187–201. [Google Scholar] [CrossRef]
- Cammann, S. Islamic and Indian Magic Squares: Part I. Hist. Relig. 1969, 8, 181–209. [Google Scholar] [CrossRef]
- Madachy, J.S. Mathematics on Vacation; Thomas Nelson & Sons Ltd.: Nashville, TN, USA, 1966. [Google Scholar]
- Makarova, N. Concentric Magic Squares of Primes. Primes Magic Games. Available online: http://primesmagicgames.altervista.org/wp/forums/topic/concentric-magic-squares-of-primes/ (accessed on 24 January 2025).
- Sloane, N.J.A.; Weisstein, E.W. A046092. The Online Encyclopedia of Integer Sequences. Available online: http://oeis.org/A046092 (accessed on 7 October 2020).
- Makarova, N. Personal Communication. 2018. [Google Scholar]
- Loly, P.; Cameron, I.; Trump, W.; Schindel, D. Magic Square Spectra. Linear Algebra Its Appl. 2009, 430, 2659–2680. [Google Scholar] [CrossRef]
- Mino, H. The Number of Magic Squares of Order Six Counted up to Rotations and Reflections. Available online: https://magicsquare6.net/doku.php?id=magicsquare6 (accessed on 6 April 2025).
Permutation | Order |
---|---|
Permute the border pairs in columns i, and , | |
noting that the values remain in their original row | |
Permute the border pairs in rows i, and , | |
noting that the values remain in their original column | |
Permute the value in with the value in | |
for all | 2 |
Permute the value in with the value in | |
for all | 2 |
Permute the value in with the value in | |
and the value in with the value in | |
for all where | 2 |
Type | List of Primes in the Border of Order 5 |
---|---|
1A | 11, 53, 71, 83, 101, 113, 191, 239, 263, 311, 389, 401, 419, 431, 449, 491 |
1B | 11, 53, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 449, 491 |
1C | 11, 71, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 431, 491 |
1D | 53, 71, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 431, 449 |
1E | 11, 53, 71, 83, 101, 113, 149, 239, 263, 353, 389, 401, 419, 431, 449, 491 |
1F | 11, 53, 71, 83, 101, 149, 191, 239, 263, 311, 353, 401, 419, 431, 449, 491 |
2A | 11, 23, 41, 53, 101, 113, 149, 191, 311, 353, 389, 401, 449, 461, 479, 491 |
2B | 11, 23, 41, 53, 101, 113, 149, 233, 269, 353, 389, 401, 449, 461, 479, 491 |
2C | 11, 23, 41, 53, 101, 113, 191, 233, 269, 311, 389, 401, 449, 461, 479, 491 |
2D | 11, 23, 41, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 461, 479, 491 |
2E | 11, 23, 41, 53, 101, 149, 191, 233, 269, 311, 353, 401, 449, 461, 479, 491 |
2F | 11, 23, 41, 53, 113, 149, 191, 233, 269, 311, 353, 389, 449, 461, 479, 491 |
2G | 11, 23, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 479, 491 |
2H | 11, 41, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 461, 491 |
2I | 23, 41, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 461, 479 |
Type | Labels | Pairs of Complement Sets, S and |
---|---|---|
1A | A1 | {53, 71, 311, 401, 419}, { 83, 101, 191, 431, 449} |
A2 | {11, 113, 263, 419, 449}, { 53, 83, 239, 389, 491} | |
A3 | {11, 191, 263, 389, 401}, {101, 113, 239, 311, 491} | |
A4 | {53, 71, 239, 401, 491}, { 11, 101, 263, 431, 449} | |
A5 | {11, 113, 311, 401, 419}, { 83, 101, 191, 389, 491} | |
1B | B1 | { 53, 191, 239, 353, 419}, { 83, 149, 263, 311, 449} |
B2 | { 11, 191, 263, 389, 401}, {101, 113, 239, 311, 491} | |
B3 | { 83, 101, 191, 389, 491}, { 11, 113, 311, 401, 419} | |
B4 | { 53, 149, 263, 389, 401}, {101, 113, 239, 353, 449} | |
B5 | { 53, 101, 191, 419, 491}, { 11, 83, 311, 401, 449} | |
B6 | {113, 149, 263, 311, 419}, { 83, 191, 239, 353, 389} | |
1C | C1 | { 11, 71, 353, 401, 419}, { 83, 101, 149, 431, 491} |
C2 | { 83, 191, 239, 353, 389}, {113, 149, 263, 311, 419} | |
C3 | { 11, 113, 311, 401, 419}, { 83, 101, 191, 389, 491} | |
C4 | {101, 149, 263, 311, 431}, { 71, 191, 239, 353, 401} | |
C5 | { 11, 149, 263, 401, 431}, { 71, 101, 239, 353, 491} | |
C6 | {101, 113, 191, 419, 431}, { 71, 83, 311, 389, 401} | |
1D | D1 | { 53, 113, 239, 419, 431}, { 71, 83, 263, 389, 449} |
D2 | { 71, 101, 311, 353, 419}, { 83, 149, 191, 401, 431} | |
D3 | { 71, 191, 239, 353, 401}, {101, 149, 263, 311, 431} | |
1E | E1 | { 11, 71, 353, 401, 419}, {83, 101, 149, 431, 491} |
E2 | {101, 113, 239, 353, 449}, {53, 149, 263, 389, 401} | |
E3 | { 71, 83, 263, 389, 449}, {53, 113, 239, 419, 431} | |
E4 | { 11, 149, 263, 401, 431}, {71, 101, 239, 353, 491} | |
1F | F1 | { 53, 101, 191, 419, 491}, {11, 83, 311, 401, 449} |
F2 | {101, 149, 263, 311, 431}, {71, 191, 239, 353, 401} | |
F3 | { 11, 101, 263, 431, 449}, {53, 71, 239, 401, 491} | |
F4 | { 71, 101, 311, 353, 419}, {83, 149, 191, 401, 431} | |
F5 | { 11, 149, 263, 401, 431}, {71, 101, 239, 353, 491} | |
F6 | { 53, 71, 311, 401, 419}, {83, 101, 191, 431, 449} |
Type | Labels | Pairs of Complement Sets, S and |
---|---|---|
2A | A1 | { 11, 41, 353, 401, 449}, { 53, 101, 149, 461, 491} |
A2 | { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491} | |
A3 | { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491} | |
A4 | { 23, 41, 353, 389, 449}, { 53, 113, 149, 461, 479} | |
2B | B1 | { 11, 101, 233, 449, 461}, { 41, 53, 269, 401, 491} |
B2 | { 23, 41, 353, 389, 449}, { 53, 113, 149, 461, 479} | |
B3 | { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491} | |
B4 | { 53, 101, 269, 353, 479}, { 23, 149, 233, 401, 449} | |
B5 | { 11, 149, 233, 401, 461}, { 41, 101, 269, 353, 491} | |
B6 | { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479} | |
2C | C1 | { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491} |
C2 | {101, 113, 269, 311, 461}, { 41, 191, 233, 389, 401} | |
C3 | { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491} | |
C4 | { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479} | |
2D | D1 | { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491} |
D2 | { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491} | |
D3 | { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491} | |
D4 | { 41, 191, 269, 353, 401}, {101, 149, 233, 311, 461} | |
2E | E1 | { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491} |
E2 | {101, 149, 233, 311, 461}, { 41, 191, 269, 353, 401} | |
2F | F1 | { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491} |
F2 | {113, 149, 233, 311, 449}, { 53, 191, 269, 353, 389} | |
2G | G1 | { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491} |
G2 | { 53, 191, 269, 353, 389}, {113, 149, 233, 311, 449} | |
G3 | { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491} | |
2H | H1 | { 11, 41, 353, 401, 449}, { 53, 101, 149, 461, 491} |
H2 | { 53, 191, 269, 353, 389}, {113, 149, 233, 311, 449} | |
H3 | { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491} | |
2I | I1 | { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479} |
I2 | { 53, 149, 191, 401, 461}, { 41, 101, 311, 353, 449} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skelt, A.L.; Perkins, S.; Roach, P.A. Prime Strictly Concentric Magic Squares of Odd Order. Mathematics 2025, 13, 1261. https://doi.org/10.3390/math13081261
Skelt AL, Perkins S, Roach PA. Prime Strictly Concentric Magic Squares of Odd Order. Mathematics. 2025; 13(8):1261. https://doi.org/10.3390/math13081261
Chicago/Turabian StyleSkelt, Anna Louise, Stephanie Perkins, and Paul Alun Roach. 2025. "Prime Strictly Concentric Magic Squares of Odd Order" Mathematics 13, no. 8: 1261. https://doi.org/10.3390/math13081261
APA StyleSkelt, A. L., Perkins, S., & Roach, P. A. (2025). Prime Strictly Concentric Magic Squares of Odd Order. Mathematics, 13(8), 1261. https://doi.org/10.3390/math13081261