Lightweight Implicit Approximation of the Minkowski Sum of an N-Dimensional Ellipsoid and Hyperrectangle
Abstract
:1. Introduction
2. Background and Related Work
3. Proposed Approximation Algorithm
3.1. The Axis-Aligned Bounding Box (bbA)
3.2. The Covariance-Oriented Bounding Box (bbB)
3.3. Intersecting the Bounding Boxes
- 1 eigendecomposition (*);
- square root computations (*);
- 1 matrix–vector multiplication;
- absolute value computations;
- comparisons.
1 | import numpy as np |
2 | |
3 | # Input definitions |
4 | cov = np.array([\dots]) # NxN matrix |
5 | half_block_size = np.array([\dots]) # N-vector |
6 | x = np.array([\dots]) # point to test, N-vector |
7 | |
8 | # Compute bounding box sizes (precomputable): |
9 | evals, evecs = np.linalg.eigh(cov) |
10 | bbA = np.sqrt(np.diag(cov)) + half_block_size |
11 | bbB = np.sqrt(evals) + np.sum(half_block_size[:,None] * np.abs(evecs), axis=0) |
12 | |
13 | # Testing the point: |
14 | in_bbA = np.all(np.abs(x) <= bbA) |
15 | in_bbB = np.all(np.abs(np.dot(evecs.T, x)) <= bbB) |
16 | in_minkowski_approx = np.logical_and(in_bbA, in_bbB) |
4. Results and Discussion
4.1. Evaluation Methodology
4.2. Results and Analysis
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruan, S.; Poblete, K.L.; Wu, H.; Ma, Q.; Chirikjian, G.S. Efficient Path Planning in Narrow Passages for Robots With Ellipsoidal Components. IEEE Trans. Robot. 2023, 39, 110–127. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, Y.; Zhao, S.; Zhang, D. Unmanned Aerial Vehicle Obstacle Avoidance Based Custom Elliptic Domain. Drones 2024, 8, 397. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, Y.; Zheng, F.; Liang, N. Research on Optimal Scheduling Strategy of Microgrid Considering Electric Vehicle Access. Symmetry 2023, 15, 1993. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Liu, Y.; Xiao, C.; Zhao, R.; Yang, Y.; Liu, Z. A Sustainability Improvement Strategy of Interconnected Data Centers Based on Dispatching Potential of Electric Vehicle Charging Stations. Sustainability 2022, 14, 6814. [Google Scholar] [CrossRef]
- Öztürk, E.; Rheinberger, K.; Faulwasser, T.; Worthmann, K.; Preißinger, M. Aggregation of Demand-Side Flexibilities: A Comparative Study of Approximation Algorithms. Energies 2022, 15, 2501. [Google Scholar] [CrossRef]
- Ðapić, P.; Pavkov, I.; Crvenković, S.; Tanackov, I. Generating Integrally Indecomposable Newton Polygons with Arbitrary Many Vertices. Mathematics 2022, 10, 2389. [Google Scholar] [CrossRef]
- Bernholt, T.; Eisenbrand, F.; Hofmeister, T. Constrained Minkowski sums: A geometric framework for solving interval problems in computational biology efficiently. Discret. Comput. Geom. 2009, 42, 22–36. [Google Scholar] [CrossRef]
- Suriyababu, V.K.; Vuik, C.; Möller, M. Towards a High Quality Shrink Wrap Mesh Generation Algorithm Using Mathematical Morphology. Comput.-Aided Des. 2023, 164, 103608. [Google Scholar] [CrossRef]
- Minarčík, J.; Estep, S.; Ni, W.; Crane, K. Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics. In Proceedings of the SIGGRAPH’24: ACM SIGGRAPH 2024 Conference Papers, Denver, CO, USA, 27 July–1 August 2024; Association for Computing Machinery: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Govindaraju, N.K.; Lin, M.C.; Manocha, D. Fast and reliable collision culling using graphics hardware. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, New York, NY, USA, 10–12 November 2004; VRST’04. pp. 2–9. [Google Scholar] [CrossRef]
- Verhack, R.; Sikora, T.; Van Wallendael, G.; Lambert, P. Steered Mixture-of-Experts for Light Field Images and Video: Representation and Coding. IEEE Trans. Multimed. 2020, 22, 579–593. [Google Scholar] [CrossRef]
- Huang, B.; Yu, Z.; Chen, A.; Geiger, A.; Gao, S. 2D Gaussian Splatting for Geometrically Accurate Radiance Fields. In Proceedings of the SIGGRAPH’24: ACM SIGGRAPH 2024 Conference Papers, Denver, CO, USA, 27 July–1 August 2024; Association for Computing Machinery: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph. 2023, 42, 4. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Pan, Z.; Zhang, L. Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting. arXiv 2024, arXiv:2310.10642. [Google Scholar] [CrossRef]
- Chirikjian, G.S.; Shiffman, B. Applications of convex geometry to Minkowski sums of m ellipsoids in : Closed-form parametric equations and volume bounds. Int. J. Math. 2021, 32, 2140009. [Google Scholar] [CrossRef]
- Ruan, S.; Chirikjian, G.S. Closed-form Minkowski sums of convex bodies with smooth positively curved boundaries. Comput.-Aided Des. 2022, 143, 103133. [Google Scholar] [CrossRef]
- Lee, I.K.; Kim, M.S.; Elber, G. Polynomial/Rational Approximation of Minkowski Sum Boundary Curves. Graph. Model. Image Process. 1998, 60, 136–165. [Google Scholar] [CrossRef]
- Ruan, S.; Poblete, K.L.; Li, Y.; Lin, Q.; Ma, Q.; Chirikjian, G.S. Efficient Exact Collision Detection between Ellipsoids and Superquadrics via Closed-form Minkowski Sums. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1765–1771. [Google Scholar] [CrossRef]
- Courteaux, M.; Mareen, H.; Ramlot, B.; Lambert, P.; Van Wallendael, G. Dimensionality Reduction for the Real-Time Light-Field View Synthesis of Kernel-Based Models. Electronics 2024, 13, 4062. [Google Scholar] [CrossRef]
- Gilbert, E.; Johnson, D.; Keerthi, S. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 1988, 4, 193–203. [Google Scholar] [CrossRef]
- Ghosh, P.K. A unified computational framework for Minkowski operations. Comput. Graph. 1993, 17, 357–378. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Flato, E.; Halperin, D. Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. 2002, 21, 39–61. [Google Scholar] [CrossRef]
- Kaul, A.; Farouki, R.T. Computing Minkowski Sums of Plane Curves. Int. J. Comput. Geom. Appl. 1995, 05, 413–432. [Google Scholar] [CrossRef]
- Yan, Y.; Chirikjian, G.S. Closed-form characterization of the Minkowski sum and difference of two ellipsoids. Geom. Dedicata 2015, 177, 103–128. [Google Scholar] [CrossRef]
- Fahim Golestaneh, A. A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in R3. Mathematics 2023, 11, 137. [Google Scholar] [CrossRef]
- Gruber, P.M. Convex and Discrete Geometry; Springer: Berlin/Heidelberg, Germany, 2007; Volume 336. [Google Scholar] [CrossRef]
- Schneider, R. Convex Bodies: The Brunn–Minkowski Theory; Cambridge University Press: Cambridge, UK, 2013; Volume 151. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Kumar, K.V. Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vis. Image Underst. 1998, 72, 379–403. [Google Scholar] [CrossRef]
- Sholokhov, O. Minimum-volume ellipsoidal approximation of the sum of two ellipsoids. Cybern. Syst. Anal. 2011, 47, 954–960. [Google Scholar] [CrossRef]
- Kurzhanski, A.; Vályi, I. Ellipsoidal Calculus for Estimation and Control; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Durieu, C.; Walter, E.; Polyak, B. Multi-input multi-output ellipsoidal state bounding. J. Optim. Theory Appl. 2001, 111, 273–303. [Google Scholar] [CrossRef]
- Kraft, D. A software package for sequential quadratic programming. In Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt; DLR German Aerospace Center—Institute for Flight Mechanics: Koln, Germany, 1988. [Google Scholar]
- Halder, A. On the Parameterized Computation of Minimum Volume Outer Ellipsoid of Minkowski Sum of Ellipsoids. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 4040–4045. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
Method | Iterative Creation? | Number of Dimensions (N) | |||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |||
Ellipsoid bounds | Yes (Slow) | 1.231 ± 0.001 | 1.597 ± 0.002 | 2.134 ± 0.003 | 2.913 ± 0.005 | 4.034 ± 0.008 | |
Yes (Fast) | 1.255 ± 0.001 | 1.684 ± 0.002 | 2.350 ± 0.005 | 3.382 ± 0.009 | 4.972 ± 0.015 | ||
No | 1.256 ± 0.001 | 1.656 ± 0.002 | 2.250 ± 0.003 | 3.126 ± 0.006 | 4.413 ± 0.009 | ||
Ours | No | 1.094 ± 0.001 | 1.261 ± 0.001 | 1.513 ± 0.002 | 1.872 ± 0.003 | 2.371 ± 0.005 | |
No | 1.390 ± 0.002 | 2.362 ± 0.004 | 4.669 ± 0.010 | 10.40 ± 0.025 | 25.54 ± 0.068 | ||
No | 1.028 ± 0.000 | 1.160 ± 0.001 | 1.388 ± 0.001 | 1.725 ± 0.002 | 2.205 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courteaux, M.; Ramlot, B.; Lambert, P.; Van Wallendael, G. Lightweight Implicit Approximation of the Minkowski Sum of an N-Dimensional Ellipsoid and Hyperrectangle. Mathematics 2025, 13, 1326. https://doi.org/10.3390/math13081326
Courteaux M, Ramlot B, Lambert P, Van Wallendael G. Lightweight Implicit Approximation of the Minkowski Sum of an N-Dimensional Ellipsoid and Hyperrectangle. Mathematics. 2025; 13(8):1326. https://doi.org/10.3390/math13081326
Chicago/Turabian StyleCourteaux, Martijn, Bert Ramlot, Peter Lambert, and Glenn Van Wallendael. 2025. "Lightweight Implicit Approximation of the Minkowski Sum of an N-Dimensional Ellipsoid and Hyperrectangle" Mathematics 13, no. 8: 1326. https://doi.org/10.3390/math13081326
APA StyleCourteaux, M., Ramlot, B., Lambert, P., & Van Wallendael, G. (2025). Lightweight Implicit Approximation of the Minkowski Sum of an N-Dimensional Ellipsoid and Hyperrectangle. Mathematics, 13(8), 1326. https://doi.org/10.3390/math13081326