Optimal Feedback Policy for the Tracking Control of Markovian Jump Boolean Control Networks over a Finite Horizon
Abstract
:1. Introduction
- The OTC problem is reformulated as an optimal control problem, and then an optimal policy is obtained to minimize the expected total tracking error.
- A new objective function is constructed by performing a weighted sum of the total tracking error and the total variation of the control input. An optimal policy is given to minimize the expected objective function value.
- The optimal feedback policies obtained in this paper apply to all initial states. As shown in the examples, the design of policies is based on the specific weightings given to the two objectives (i.e., reducing tracking errors and decreasing input variations).
2. Preliminaries
3. Main Results
3.1. Finite Horizon OTC of MJBCNs
Algorithm 1: Find an optimal solution for (11). |
3.2. Finite Horizon OTC of MJBCNs with a Penalty for Control Input Changes
Algorithm 2: Calculate an optimal solution for (23). |
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Qi, H.; Li, Z. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach; Springer: London, UK, 2011. [Google Scholar]
- Liu, W.; Fu, S.; Zhao, J. Set stability and set stabilization of Boolean control networks avoiding undesirable set. Mathematics 2021, 9, 2864. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H. Robust stabilization of impulsive Boolean control networks with function perturbation. Mathematics 2022, 10, 4029. [Google Scholar] [CrossRef]
- Deng, L.; Cao, X.; Zhao, J. One-bit function perturbation impact on robust set stability of Boolean networks with disturbances. Mathematics 2024, 12, 2258. [Google Scholar] [CrossRef]
- Tang, T.; Ding, X.; Lu, J.; Liu, Y. Improved criteria for controllability of Markovian jump Boolean control networks with time-varying state delays. IEEE Trans. Autom. Control 2024, 69, 7028–7035. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.-E.; Wang, B. Observability of singular Boolean control networks with state delays. J. Franklin Inst. 2022, 359, 331–351. [Google Scholar] [CrossRef]
- Li, Y.; Li, H. Relation coarsest partition method to observability of probabilistic Boolean networks. Inf. Sci. 2024, 681, 121221. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Liang, J.; Li, M. State estimation for stochastic time-varying Boolean networks. IEEE Trans. Autom. Control 2020, 65, 5480–5487. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Shen, B.; Liang, J. Model evaluation of the stochastic Boolean control networks. IEEE Trans. Autom. Control 2022, 67, 4146–4153. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xiao, G. Luenberger-like observer design and optimal state estimation of logical control networks with stochastic disturbances. IEEE Trans. Autom. Control 2023, 68, 8193–8200. [Google Scholar] [CrossRef]
- Li, B.; Pan, Q.; Zhong, J.; Xu, W. Long-run behavior estimation of temporal Boolean networks with multiple data losses. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 15004–15011. [Google Scholar] [CrossRef]
- Li, B.; Lu, J.; Xu, W.; Zhong, J. Lossless state compression of Boolean control networks. IEEE Trans. Autom. Control 2024, 69, 4166–4173. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, L. Output tracking control of Boolean control networks via state feedback: Constant reference signal case. Automatica 2015, 59, 54–59. [Google Scholar] [CrossRef]
- Li, H.; Xie, L.; Wang, Y. Output regulation of Boolean control networks. IEEE Trans. Autom. Control 2017, 62, 2993–2998. [Google Scholar] [CrossRef]
- Zhang, Z.; Leifeld, T.; Zhang, P. Finite horizon tracking control of Boolean control networks. IEEE Trans. Autom. Control 2018, 63, 1798–1805. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Fu, S.; Xia, J. Robust output tracking of Boolean control networks over finite time. Mathematics 2022, 10, 4078. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, J.-E. Research status of nonlinear feedback shift register based on semi-tensor product. Mathematics 2022, 10, 3538. [Google Scholar] [CrossRef]
- Wang, S.; Li, H. Resolution of fuzzy relational inequalities with Boolean semi-tensor product composition. Mathematics 2021, 9, 937. [Google Scholar] [CrossRef]
- Shmulevich, I.; Dougherty, E.R.; Zhang, W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 2002, 90, 1778–1792. [Google Scholar] [CrossRef]
- Shmulevich, I.; Dougherty, E.R.; Kim, S.; Zhang, W. Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18, 261–274. [Google Scholar] [CrossRef]
- Kim, S.; Li, H.; Dougherty, E.R.; Cao, N.; Chen, Y.; Bittner, M.; Suh, E.B. Can Markov chain models mimic biological regulation? J. Biol. Syst. 2002, 10, 337–357. [Google Scholar] [CrossRef]
- Meng, M.; Xiao, G.; Zhai, C.; Li, G. Controllability of Markovian jump Boolean control networks. Automatica 2019, 106, 70–76. [Google Scholar] [CrossRef]
- Chen, B.; Cao, J.; Lu, G.; Rutkowski, L. Stabilization of Markovian jump Boolean control networks via sampled-data control. IEEE Trans. Cybern. 2022, 52, 10290–10301. [Google Scholar] [CrossRef]
- Chen, B.; Cao, J.; Lu, G.; Rutkowski, L. Stabilization of Markovian jump Boolean control networks via event-triggered control. IEEE Trans. Autom. Control 2023, 68, 1215–1222. [Google Scholar] [CrossRef]
- Melhem, K.; Wang, W. Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 2009, 25, 428–437. [Google Scholar] [CrossRef]
- Al-Hiddabi, S.A.; McClamroch, N.H. Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control. IEEE Trans. Control Syst. Technol. 2002, 10, 780–792. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Guo, P. State feedback based output tracking control of probabilistic Boolean networks. Inf. Sci. 2016, 349–350, 1–11. [Google Scholar] [CrossRef]
- Chen, B.; Cao, J.; Luo, Y.; Rutkowski, L. Asymptotic output tracking of probabilistic Boolean control networks. IEEE Trans. Circuits Syst. I. Reg. Papers 2020, 67, 2780–2790. [Google Scholar] [CrossRef]
- Abdollahi, J.; Dubljevic, S. Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor. Chem. Eng. Sci. 2012, 84, 619–627. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, J.-E.; Jiao, T. Finite horizon tracking control of probabilistic Boolean control networks. J. Franklin Inst. 2021, 358, 9909–9928. [Google Scholar] [CrossRef]
- Zhang, A.; Li, L.; Li, Y.; Lu, J. Finite-time output tracking of probabilistic Boolean control networks. Appl. Math. Comput. 2021, 411, 126413. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xiao, G. Optimal control for reachability of Markov jump switching Boolean control networks subject to output trackability. Int. J. Control 2025, 98, 200–207. [Google Scholar] [CrossRef]
- Khatri, C.G.; Rao, C.R. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhyā Indian J. Stat. A 1968, 30, 167–180. [Google Scholar]
- Li, C.; Zhang, X.; Feng, J.-E.; Cheng, D. Transition analysis of stochastic logical control networks. IEEE Trans. Autom. Control 2024, 69, 1226–1233. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Li, H. Two kinds of optimal controls for probabilistic mix-valued logical dynamic networks. Sci. China Inf. Sci. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, T. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst. Control Lett. 2015, 82, 108–114. [Google Scholar] [CrossRef]
- Meng, M.; Liu, L.; Feng, G. Stability and l1 gain analysis of Boolean networks with Markovian jump parameters. IEEE Trans. Autom. Control 2017, 62, 4222–4228. [Google Scholar] [CrossRef]
- Acernese, A.; Yerudkar, A.; Glielmo, L.; Del Vecchio, C. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks. IEEE Control Syst. Lett. 2021, 5, 337–342. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
Set of natural numbers | |
, | , |
n-dimensional identity matrix | |
i-th column of | |
Set of columns of ; | |
Vector form of , i.e., | |
-th entry of the matrix A | |
i-th column of the matrix A | |
i-th entry of the vector v | |
Set of integers | |
The logical matrix of which k-column is | |
Set of real matrices | |
Set of logical matrices | |
⊗ | Kronecker product |
⋉ | Semi-tensor product [2] |
* | Khatri-Rao product [34] |
Short for | |
, , | , |
t | 1 | 2 | 3 | 4 |
---|---|---|---|---|
0 | 1 | 1 | 0 | |
1 | 0 | 1 | 0 | |
t | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | |
1 | 1 | 0 | 1 | 0 | 0 | |
0 | 1 | 1 | 0 | 1 | 0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Xue, Y.; Shi, A. Optimal Feedback Policy for the Tracking Control of Markovian Jump Boolean Control Networks over a Finite Horizon. Mathematics 2025, 13, 1332. https://doi.org/10.3390/math13081332
Chen B, Xue Y, Shi A. Optimal Feedback Policy for the Tracking Control of Markovian Jump Boolean Control Networks over a Finite Horizon. Mathematics. 2025; 13(8):1332. https://doi.org/10.3390/math13081332
Chicago/Turabian StyleChen, Bingquan, Yuyi Xue, and Aiju Shi. 2025. "Optimal Feedback Policy for the Tracking Control of Markovian Jump Boolean Control Networks over a Finite Horizon" Mathematics 13, no. 8: 1332. https://doi.org/10.3390/math13081332
APA StyleChen, B., Xue, Y., & Shi, A. (2025). Optimal Feedback Policy for the Tracking Control of Markovian Jump Boolean Control Networks over a Finite Horizon. Mathematics, 13(8), 1332. https://doi.org/10.3390/math13081332