Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations
Abstract
:1. Introduction
- Exact solutions to small-scale problems. The problem considered is formulated as a discrete-time Markov decision process (MDP), and stochastic dynamic programming (SDP) is used to obtain the optimal solution. To the best of our knowledge, this is the first time of an MDP approach being applied to the stochastic RCPSP-FPS. Exact solutions are an important benchmark for evaluating the performance of approximate algorithms.
- A comprehensive comparison of the performance of priority rule-based methods for solving the stochastic RCPSP-FPS. Although [19] made a comprehensive comparison of the performance of priority rule-based methods in solving the deterministic RCPSP-FPS, these conclusions may not be applicable to the stochastic RCPSP-FPS. Therefore, our work fills the gap in relevant research and provides reference for selecting appropriate decision rules for practical engineering applications.
- The development of efficient approximate method based on rollout algorithms. In the improved rollout algorithms, we only use the best performing paired rules to simulate and evaluate feasible actions, and we integrate the common random numbers technique. The experimental results show that it not only effectively improves the efficiency of the rollout algorithms but also enhances the accuracy of optimal action selection.
2. Literature Review
3. Problem Description
3.1. Discrete Triangular Distributions
3.2. Resource-Constrained Project Scheduling with a Flexible Project Structure
- Let represent the set of mandatory activities, and the activities not in V are considered optional.
- Let represent the set containing multiple triggering activities. Each triggering activity corresponds to an optional activity set . Note that all optional sets are disjoint, meaning that each optional activity belongs to only one optional set. If the triggering activity is implemented, the project manager must make a selection where exactly one activity in must be implemented and the others in will never be implemented. The triggering activity may be either a mandatory or an optional activity, potentially forming a nested chain of triggers.
- Let represent the set of dominant activities. A dominant activity is an optional activity that has a set of dependent optional activities . All dependent activities in must be implemented if activity j is implemented. Conversely, if activity j is not implemented, then all the activities in will not be implemented.
- The duration of activity j is assumed to be a random variable following the discrete triangular distribution.
- Preemption is not allowed.
4. MDP Model and Optimal Policy
4.1. MDP Model
4.2. Optimal Policy
4.3. An Illustrative Example
5. Suboptimal Policies
5.1. Paired Rules
- is the latest finish time of activity j calculated by CPM method.
- is set of immediate successors of activity j.
- is set of total successors of activity j.
5.2. Metaheuristic Algorithms
5.3. Rollout Algorithms
6. Computational Study
6.1. Experimental Data
6.2. Parameter Turning for Rollout Algorithms
6.3. Result Analysis
6.4. Analysis of the Impact of Duration Distribution and Variance on the Algorithm
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RCPSP | Resource-constrained project scheduling problem |
RCPSP-FPS | Resource-constrained project scheduling problem with a flexible project structure |
RCPSP-AC | Resource-constrained project scheduling problem with alternative activity chains |
RCPSP-AS | Resource-constrained project scheduling problem with alternative subgraphs |
CRN | Common random numbers |
GA | Genetic algorithm |
MDP | Markov decision process |
LST | Latest Start Time |
LFT | Latest Finish Time |
SCRR | Smallest cumulative resource requirement |
LRPW | Least rank positional weight |
(G)RPW | Rank positional weight |
SOD | Sum Of durations |
TWC | Total work content |
TTSL | Total processing time of the subgraph with its links |
TTXSL | Total time of the current and following subgraphs and their links |
CPM | Critical Path Method |
References
- Hartmann, S.; Briskorn, D. A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 2010, 207, 1–14. [Google Scholar] [CrossRef]
- Hartmann, S.; Briskorn, D. An updated survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 2022, 297, 1–14. [Google Scholar] [CrossRef]
- Blazewicz, J.; Lenstra, J.; Kan, A. Scheduling subject to resource constraints: Classification and complexity. Discret. Appl. Math. 1983, 5, 11–24. [Google Scholar] [CrossRef]
- Herroelen, W.; Leus, R. Project scheduling under uncertainty: Survey and research potentials. Eur. J. Oper. Res. 2005, 165, 289–306. [Google Scholar] [CrossRef]
- Hazır, Ö.; Ulusoy, G. A classification and review of approaches and methods for modeling uncertainty in projects. Int. J. Prod. Econ. 2020, 223, 107522. [Google Scholar] [CrossRef]
- Kellenbrink, C.; Helber, S. Scheduling resource-constrained projects with a flexible project structure. Eur. J. Oper. Res. 2015, 246, 379–391. [Google Scholar] [CrossRef]
- Ding, H.; Zhuang, C.; Liu, J. Extensions of the resource-constrained project scheduling problem. Autom. Constr. 2023, 153, 104958. [Google Scholar] [CrossRef]
- Ballestín, F. When it is worthwhile to work with the stochastic RCPSP? J. Sched. 2007, 10, 153–166. [Google Scholar] [CrossRef]
- Ballestín, F.; Leus, R. Resource-Constrained Project Scheduling for Timely Project Completion with Stochastic Activity Durations. Prod. Oper. Manag. 2009, 18, 459–474. [Google Scholar] [CrossRef]
- Ashtiani, B.; Leus, R.; Aryanezhad, M.B. New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing. J. Sched. 2011, 14, 157–171. [Google Scholar] [CrossRef]
- Rostami, S.; Creemers, S.; Leus, R. New strategies for stochastic resource-constrained project scheduling. J. Sched. 2018, 21, 349–365. [Google Scholar] [CrossRef]
- Creemers, S.; Leus, R.; Lambrecht, M. Scheduling Markovian PERT networks to maximize the net present value. Oper. Res. Lett. 2010, 38, 51–56. [Google Scholar] [CrossRef]
- Creemers, S. Minimizing the expected makespan of a project with stochastic activity durations under resource constraints. J. Sched. 2015, 18, 263–273. [Google Scholar] [CrossRef]
- Creemers, S. Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure. Eur. J. Oper. Res. 2018, 267, 16–22. [Google Scholar] [CrossRef]
- Creemers, S. The preemptive stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 2019, 277, 238–247. [Google Scholar] [CrossRef]
- Chen, Z.; Demeulemeester, E.; Bai, S.; Guo, Y. Efficient priority rules for the stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 2018, 270, 957–967. [Google Scholar] [CrossRef]
- Kerkhove, L.P.; Vanhoucke, M. Optimised scheduling for weather sensitive offshore construction projects. Omega 2017, 66, 58–78. [Google Scholar] [CrossRef]
- Trietsch, D.; Mazmanyan, L.; Gevorgyan, L.; Baker, K.R. Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation. Eur. J. Oper. Res. 2012, 216, 386–396. [Google Scholar] [CrossRef]
- Nekoueian, R.; Servranckx, T.; Vanhoucke, M. Constructive heuristics for selecting and scheduling alternative subgraphs in resource-constrained projects. Comput. Ind. Eng. 2023, 182, 109399. [Google Scholar] [CrossRef]
- van der Beek, T.; van Essen, J.; Pruyn, J.; Aardal, K. Exact solution methods for the Resource Constrained Project Scheduling Problem with a flexible Project Structure. Eur. J. Oper. Res. 2025, 322, 56–69. [Google Scholar] [CrossRef]
- Tao, S.; Dong, Z.S. Scheduling resource-constrained project problem with alternative activity chains. Comput. Ind. Eng. 2017, 114, 288–296. [Google Scholar] [CrossRef]
- Tao, S.; Dong, Z.S. Multi-mode resource-constrained project scheduling problem with alternative project structures. Comput. Ind. Eng. 2018, 125, 333–347. [Google Scholar] [CrossRef]
- Tao, S.; Wu, C.; Sheng, Z.; Wang, X. Stochastic Project Scheduling with Hierarchical Alternatives. Appl. Math. Model. 2018, 58, 181–202. [Google Scholar] [CrossRef]
- Hauder, V.A.; Beham, A.; Raggl, S.; Parragh, S.N.; Affenzeller, M. Resource-constrained multi-project scheduling with activity and time flexibility. Comput. Ind. Eng. 2020, 150, 106857. [Google Scholar] [CrossRef]
- Servranckx, T.; Vanhoucke, M. A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs. Eur. J. Oper. Res. 2019, 273, 841–860. [Google Scholar] [CrossRef]
- Servranckx, T.; Coelho, J.; Vanhoucke, M. A genetic algorithm for the Resource-Constrained Project Scheduling Problem with Alternative Subgraphs using a boolean satisfiability solver. Eur. J. Oper. Res. 2024, 316, 815–827. [Google Scholar] [CrossRef]
- Servranckx, T.; Coelho, J.; Vanhoucke, M. Various extensions in resource-constrained project scheduling with alternative subgraphs. Int. J. Prod. Res. 2022, 60, 3501–3520. [Google Scholar] [CrossRef]
- Kulkarni, V.G.; Adlakha, V.G. Markov and Markov-Regenerative pert Networks. Oper. Res. 1986, 34, 769–781. [Google Scholar] [CrossRef]
- Sobel, M.J.; Szmerekovsky, J.G.; Tilson, V. Scheduling projects with stochastic activity duration to maximize expected net present value. Eur. J. Oper. Res. 2009, 198, 697–705. [Google Scholar] [CrossRef]
- Hermans, B.; Leus, R. Scheduling Markovian PERT networks to maximize the net present value: New results. Oper. Res. Lett. 2018, 46, 240–244. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Mao, N.; Chen, X.; Li, Z. Proactive approach for stochastic RCMPSP based on multi-priority rule combinations. Int. J. Prod. Res. 2015, 53, 1098–1110. [Google Scholar] [CrossRef]
- Luh, P.B.; Liu, F.; Moser, B. Scheduling of design projects with uncertain number of iterations. Eur. J. Oper. Res. 1999, 113, 575–592. [Google Scholar] [CrossRef]
- Wang, X.; Leus, R.; Creemers, S.; Chen, Q.; Mao, N. A CTMDP-Based Exact Method for RCPSP with Uncertain Activity Durations and Rework. In Proceedings of the Operations Research Proceedings, Berlin, Germany, 6–8 September 2017; Kliewer, N., Ehmke, J.F., Borndörfer, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 559–565. [Google Scholar]
- Satic, U.; Jacko, P.; Kirkbirde, C. Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem. Int. J. Prod. Res. 2022, 60, 1411–1423. [Google Scholar] [CrossRef]
- Dreyfus, S.E. Richard Bellman on the Birth of Dynamic Programming. Oper. Res. 2002, 50, 48–51. [Google Scholar] [CrossRef]
- Powell, W.B. Approximate Dynamic Programming—Solving the Curses of Dimensionality; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Satic, U.; Jacko, P.; Kirkbride, C. A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem. Eur. J. Oper. Res. 2023, 315, 454–469. [Google Scholar] [CrossRef]
- Igelmund, G.; Radermacher, F.J. Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks 1983, 13, 1–28. [Google Scholar] [CrossRef]
- Rahman, H.F.; Chakrabortty, R.K.; Ryan, M.J. Scheduling project with stochastic durations and time-varying resource requests: A metaheuristic approach. Comput. Ind. Eng. 2021, 157, 107363. [Google Scholar] [CrossRef]
- Zhang, H.; Demeulemeester, E.; Li, L.; Bai, S. Surrogate-assisted cooperative learning genetic programming for the resource-constrained project scheduling problem with stochastic activity durations and transfer times. Comput. Oper. Res. 2025, 173, 106816. [Google Scholar] [CrossRef]
- Browning, T.R.; Yassine, A.A. Managing a Portfolio of Product Development Projects under Resource Constraints. Decis. Sci. 2016, 47, 333–372. [Google Scholar] [CrossRef]
- Yassine, A.A.; Mostafa, O.; Browning, T.R. Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms. Comput. Ind. Eng. 2017, 107, 39–56. [Google Scholar] [CrossRef]
- Li, H.; Womer, N.K. Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. Eur. J. Oper. Res. 2015, 246, 20–33. [Google Scholar] [CrossRef]
- Clark, C.E. Letter to the Editor—The PERT Model for the Distribution of an Activity Time. Oper. Res. 1962, 10, 405–406. [Google Scholar] [CrossRef]
- Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Wang, Y.; He, Z.; Kerkhove, L.P.; Vanhoucke, M. On the performance of priority rules for the stochastic resource constrained multi-project scheduling problem. Comput. Ind. Eng. 2017, 114, 223–234. [Google Scholar] [CrossRef]
- Olaguíbel, R.A.V.; Goerlich, J.T. Chapter 5—Heuristic Algorithms for Resource-Constrained Project Scheduling: A Review and an Empirical Analysis. In ProjectScheduling; Springer: New York, NY, USA, 1989. [Google Scholar]
- Yang, K.K. A comparison of dispatching rules for executing a resource-constrained project with estimated activity durations. Omega-Int. J. Manag. Sci. 1998, 26, 729–738. [Google Scholar] [CrossRef]
- Davis, E.W.; Patterson, J.H. A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling. Manag. Sci. 1975, 21, 944–955. [Google Scholar] [CrossRef]
- Cooper, D.F. Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation. Manag. Sci. 1976, 22, 1186–1194. [Google Scholar] [CrossRef]
- Bertsekas, D.P.; Tsitsiklis, J.N.; Wu, C.C. Rollout Algorithms for Combinatorial Optimization. J. Heuristics 1997, 3, 245–262. [Google Scholar] [CrossRef]
- Bertsekas, D.P.; Castañón, D.A. Rollout Algorithms for Stochastic Scheduling Problems. J. Heuristics 1998, 5, 89–108. [Google Scholar] [CrossRef]
- Goodson, J.C.; Ohlmann, J.W.; Thomas, B.W. Rollout Policies for Dynamic Solutions to the Multivehicle Routing Problem with Stochastic Demand and Duration Limits. Oper. Res. 2013, 61, 138–154. [Google Scholar] [CrossRef]
- Goodson, J.C.; Thomas, B.W.; Ohlmann, J.W. A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs. Eur. J. Oper. Res. 2017, 258, 216–229. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Antithetic Variates, Common Random Numbers and Optimal Computer Time Allocation in Simulation. Manag. Sci. 1975, 21, 1176–1185. [Google Scholar] [CrossRef]
- Kolisch, R. Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. Eur. J. Oper. Res. 1996, 90, 320–333. [Google Scholar] [CrossRef]
- Sprecher, A.; Kolisch, R.; Drexl, A. Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 1995, 80, 94–102. [Google Scholar] [CrossRef]
- Kolisch, R.; Sprecher, A.; Drexl, A. Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems. Manag. Sci. 1995, 41, 1693–1703. [Google Scholar] [CrossRef]
- Vanhoucke, M.; Coelho, J.; Debels, D.; Maenhout, B.; Tavares, L.V. An evaluation of the adequacy of project network generators with systematically sampled networks. Eur. J. Oper. Res. 2008, 187, 511–524. [Google Scholar] [CrossRef]
- Branke, J.; Chick, S.E.; Schmidt, C. Selecting a Selection Procedure. Manag. Sci. 2007, 53, 1916–1932. [Google Scholar] [CrossRef]
Problem Definition | Literature | Objective | Approach | Optimal |
---|---|---|---|---|
RCPSP with hierarchical alternative plans and stochastic activity durations | [23] | makespan | Chance constrained programming, sampling average approximation | N |
RCPSP with phase-type distributed | [14] | net present value | Continuous-time Markov chain, SDP | Y |
RCPSP with hypoexponentially distributed | [15] | makespan | Continuous-time Markov chain, SDP | Y |
RCMPSP with uncertain activity durations | [31] | makespan | MDP, ruler-based approximation method | N |
RCMPSP with uncertain activity durations and random new project arrivals | [34] | discounted Long-run profit | MDP, SDP | Y |
[37] | discounted Long-run profit | MDP, linear approximation model | N | |
RCPSP with uncertain activity durations | [16] | makespan | Ruler-based simulation | N |
[43] | makespan | MDP, rollout look-ahead policy | N | |
RCPSP with uncertain activity durations and transfer times | [40] | makespan | genetic programming, ruler-based simulation | N |
RCPSP with uncertain durations and time-varying resource requests | [39] | makespan | RCPSP/t model, an advanced memetic algorithm | N |
RCMPSP with uncertain durations and feedback | [42] | makespan | genetic algorithm | N |
Priority Rules | Rank | Remark |
---|---|---|
SOD | Min | The total duration of the activity with its dependents and the average duration of activities for its nested selections |
TWC | Min | The total work content of the activity with its dependents and the average work content of activities for its nested selections |
TTSL | Min | The total duration of the activity with its dependents |
TTXSL | Min | The total duration of the activity with its dependents and the activities for its nested selections |
Priority Rules | Reference | Rank | Formula |
---|---|---|---|
(G)RPW | [47] | Max | |
LRPW | [47] | Min | |
SCRR | [48] | Min | |
LFT | [49] | Min | |
LST | [50] | Min |
Algorithm | Parameter | Value | Remark |
---|---|---|---|
GA | 125 | Generations | |
80 | Population size | ||
3% | Selection sequencing mutation probability | ||
10% | Activity sequencing mutation probability | ||
TS | 0.25 × | Selecting sequencing tabu length, where is the total number of optional activities | |
0.5 × n | Activity sequencing Tabu length, where n is the total number of activities | ||
#schedules | 10,000 | The maximum number of schedules that can be generated | |
#iterations | 2 | Perform activity sequence optimization #iterations times after each selection sequence optimization |
Parameter | n = 15 | n = 20 | n = 30 | n = 60 | ||||
---|---|---|---|---|---|---|---|---|
Low | High | Low | High | Low | High | Low | High | |
(, ) | (1, 2) | (2, 3) | (1, 2) | (3, 3) | (1, 2) | (3, 3) | (2, 2) | (6, 3) |
(, ) | (1, 1) | (2, 1) | (1, 1) | (3, 1) | (1, 1) | (3, 1) | (2, 1) | (6, 1) |
Left | Symmetric | Right | |||||||
---|---|---|---|---|---|---|---|---|---|
3 | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 2 | 6 |
4 | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 3 | 7 |
5 | 2 | 6 | 7 | 2 | 5 | 8 | 3 | 4 | 8 |
6 | 3 | 7 | 8 | 3 | 6 | 9 | 4 | 5 | 9 |
7 | 3 | 8 | 10 | 3 | 7 | 11 | 5 | 6 | 10 |
8 | 4 | 9 | 11 | 4 | 8 | 12 | 6 | 7 | 11 |
9 | 4 | 11 | 12 | 4 | 9 | 14 | 6 | 7 | 14 |
10 | 5 | 12 | 13 | 5 | 10 | 15 | 7 | 8 | 15 |
Rule | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOD | TTSL | TTXSL | TWC | EPR* | − | SOD | TTSL | TTXSL | TWC | EPR* | ||
LST | 18.14 | 3.59 | 3.67 | 3.69 | 3.33 | 2.29 | 24.50 | 3.28 | 3.64 | 3.42 | 2.71 | 1.72 |
LFT | 17.79 | 3.77 | 3.89 | 3.86 | 3.48 | 2.51 | 23.73 | 3.75 | 4.06 | 3.87 | 3.34 | 2.32 |
RPW | 21.23 | 4.34 | 4.37 | 4.42 | 4.32 | 2.98 | 25.70 | 5.45 | 5.84 | 5.59 | 4.79 | 3.89 |
LRPW | 15.53 | 9.21 | 9.44 | 9.22 | 8.98 | 7.96 | 16.26 | 11.35 | 11.49 | 11.45 | 10.94 | 9.49 |
SCRR | 17.53 | 10.61 | 10.80 | 10.60 | 10.56 | 9.45 | 18.00 | 12.84 | 12.97 | 12.95 | 12.57 | 11.09 |
SPR* | 1.56 | 1.79 | 1.67 | 1.46 | 0.00 | 1.75 | 2.08 | 1.91 | 1.22 | 0.00 |
Rule | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
− | SOD | TTSL | TTXSL | TWC | EPR* | − | SOD | TTSL | TTXSL | TWC | EPR* | |
LFT | 10.77 | 2.20 | 2.32 | 2.27 | 2.08 | 1.36 | 9.56 | 1.47 | 1.62 | 1.49 | 1.14 | 0.65 |
LST | 11.05 | 2.22 | 2.41 | 2.34 | 2.13 | 1.25 | 10.00 | 1.58 | 1.75 | 1.64 | 1.31 | 0.75 |
RPW | 15.13 | 5.75 | 5.66 | 5.71 | 5.43 | 4.38 | 16.23 | 6.62 | 6.76 | 6.65 | 6.30 | 5.68 |
LRPW | 13.62 | 10.42 | 10.52 | 10.72 | 10.67 | 9.40 | 15.50 | 12.37 | 12.32 | 12.35 | 11.98 | 11.18 |
SCRR | 17.10 | 14.07 | 14.01 | 14.18 | 14.12 | 12.98 | 19.89 | 15.89 | 16.08 | 15.99 | 15.66 | 14.92 |
SPR* | 0.98 | 1.11 | 1.05 | 0.86 | 0.00 | 0.80 | 0.96 | 0.83 | 0.54 | 0.00 |
Paired Rule | n = 15 | n = 20 | n = 30 | ||||
---|---|---|---|---|---|---|---|
Rollout’ | PRollout’ | Rollout’ | PRollout’ | Rollout’ | PRollout’ | ||
TWC-LFT | Dev.best(%) | 0.46 | 0.46 | 0.65 | 0.68 | 0.95 | 0.99 |
RunTime (s) | 0.15 | 0.09 | 1.01 | 0.65 | 45.68 | 27.50 | |
TWC-SPR* | Dev.best(%) | 0.14 | 0.16 | 0.16 | 0.16 | 0.18 | 0.33 |
RunTime (s) | 0.83 | 0.51 | 5.88 | 3.96 | 137.70 | 73.64 | |
EPR*-LFT | Dev.best(%) | 0.45 | 0.44 | 44.93 | 0.65 | 0.91 | 0.93 |
RunTime (s) | 0.59 | 0.36 | 4.25 | 2.75 | 125.08 | 71.97 | |
PR** | Dev.best(%) | 0.15 | 0.14 | 0.14 | 0.18 | 0.14 | 0.17 |
RunTime (s) | 3.64 | 2.28 | 24.92 | 16.23 | 958.96 | 592.01 |
Method | n | Flexibility | Skewness | Total | ||||
---|---|---|---|---|---|---|---|---|
Low | High | Left | Symm | Right | ||||
PR** | 2.98 | 4.45 | 4.06 | 3.38 | 3.75 | 3.66 | 3.75 | 3.72 |
TS | 1.52 | 2.47 | 2.40 | 1.58 | 1.96 | 2.02 | 2.00 | 1.99 |
GA | 1.43 | 2.16 | 2.28 | 1.32 | 1.79 | 1.80 | 1.80 | 1.80 |
PRollout’ | 1.30 | 2.23 | 1.99 | 1.54 | 1.78 | 1.75 | 1.75 | 1.76 |
Rollout’ | 1.30 | 2.21 | 1.98 | 1.53 | 1.79 | 1.73 | 1.73 | 1.75 |
SDP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 |
Method | n | Flexibility | Skewness | Total | ||||
---|---|---|---|---|---|---|---|---|
Low | High | Left | Symm | Right | ||||
PR** | 3.55 | 4.20 | 3.44 | 4.30 | 3.90 | 3.76 | 3.94 | 3.87 |
TS | 1.05 | 1.38 | 1.27 | 1.16 | 1.19 | 1.28 | 1.16 | 1.21 |
GA | 0.99 | 1.28 | 1.25 | 1.02 | 1.11 | 1.14 | 1.16 | 1.14 |
PRollout’ | 0.64 | 0.45 | 0.38 | 0.70 | 0.55 | 0.50 | 0.58 | 0.54 |
Rollout’ | 0.61 | 0.42 | 0.36 | 0.68 | 0.52 | 0.48 | 0.55 | 0.52 |
PR** | TS | GA | Rollout’ | PRollout’ | |
---|---|---|---|---|---|
PR** | 0.00 | <0.001 | 0.000 | 0.000 | 0.000 |
TS | 0.000 | <0.001 | 0.000 | <0.001 | |
GA | 0.000 | 0.000 | <0.001 | ||
Rollout’ | 0.000 | <0.001 | |||
PRollout’ | 0.000 |
Instance Scale | PR** | TS | GA | Rollout’ | PRollout’ | SDP |
---|---|---|---|---|---|---|
15 | 0.01 (0.35) | 2.55 (0.57) | 2.51 (0.5) | 0.15 (0.49) | 0.09 (0.48) | 0.44 (57.28) |
20 | 0.02 (1.01) | 14.00 (1.9) | 12.40 (1.82) | 1.01 (1.76) | 0.65 (1.77) | 6.51 (534.35) |
30 | 0.02 | 40.50 | 35.96 | 44.76 | 26.32 | - |
60 | 0.08 | 256 | 240 | 240.94 | 132.53 | - |
Distribution Type | Name | Range | Variance |
---|---|---|---|
Uniform distribution | U1 | ||
U2 | |||
Beta distribution | B1 | ||
B2 |
Method | n | Flexibility | Distribution | Total | |||||
---|---|---|---|---|---|---|---|---|---|
Low | High | U1 | U2 | B1 | B2 | ||||
PR** | 2.30 | 2.69 | 2.03 | 2.96 | 3.53 | 1.58 | 3.49 | 1.39 | 2.50 |
TS | 1.30 | 1.13 | 1.14 | 1.29 | 0.98 | 1.51 | 0.93 | 1.43 | 1.21 |
GA | 1.18 | 0.97 | 1.12 | 1.04 | 0.88 | 1.33 | 0.83 | 1.27 | 1.08 |
PRollout’ | 0.89 | 0.42 | 0.52 | 0.79 | 0.50 | 0.68 | 0.55 | 0.88 | 0.65 |
PR** | TS | GA | PRollout’ | |
---|---|---|---|---|
PR** | 0.00 | <0.001 | <0.001 | <0.001 |
TS | 0.000 | 0.528 | <0.001 | |
GA | 0.000 | <0.001 | ||
PRollout’ | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Wang, X.; Chen, Q. Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations. Mathematics 2025, 13, 1395. https://doi.org/10.3390/math13091395
Yu C, Wang X, Chen Q. Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations. Mathematics. 2025; 13(9):1395. https://doi.org/10.3390/math13091395
Chicago/Turabian StyleYu, Chunlai, Xiaoming Wang, and Qingxin Chen. 2025. "Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations" Mathematics 13, no. 9: 1395. https://doi.org/10.3390/math13091395
APA StyleYu, C., Wang, X., & Chen, Q. (2025). Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations. Mathematics, 13(9), 1395. https://doi.org/10.3390/math13091395