Indoor Multidimensional Reconstruction Based on Maximal Cliques
Abstract
:1. Introduction
- (1)
- An efficient dual-branch network architecture is designed as the main framework for 3D reconstruction and semantic segmentation.
- (2)
- A novel point cloud registration method is developed based on maximal cliques to improve the efficiency of looking for the optimal corresponding point pairs in point clouds.
- (3)
- Evaluations on several datasets show that our approach can significantly reduce processing time without losing accuracy in indoor 3D reconstruction.
2. Related Work
2.1. Traditional Reconstruction Method
2.2. Learned Reconstruction Method
2.3. Segmentation in Reconstruction
3. Method
3.1. Point Cloud Registration
3.2. Semantic Segmentation and Reconstruction Fusion
4. Experiments
4.1. Datasets
- (1)
- ModelNet40
- (2)
- Lounge and Bedroom Room
- (3)
- ICL-NUIM
- (4)
- Real-world scene
4.2. Registration Experiments
4.3. Reconstruction Experiments
4.4. Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Gong, G.; Hu, X.; Shang, G.; Zhu, H. Cognitive Enhancement of Robot Path Planning and Environmental Perception Based on Gmapping Algorithm Optimization. Electronics 2024, 13, 818. [Google Scholar] [CrossRef]
- Menini, D.; Kumar, S.; Oswald, M.R.; Sandström, E.; Sminchisescu, C.; Van Gool, L. A real-time online learning framework for joint 3d reconstruction and semantic segmentation of indoor scenes. IEEE Robot. Autom. Lett. 2021, 7, 1332–1339. [Google Scholar] [CrossRef]
- Hu, D.; Gan, V.J.; Yin, C. Robot-assisted mobile scanning for automated 3D reconstruction and point cloud semantic segmentation of building interiors. Autom. Constr. 2023, 152, 104949. [Google Scholar] [CrossRef]
- Hu, D.; Gan, V.J.; Wang, T.; Ma, L. Multi-agent robotic system (MARS) for UAV-UGV path planning and automatic sensory data collection in cluttered environments. Build. Environ. 2022, 221, 109349. [Google Scholar] [CrossRef]
- Huang, W.; Wang, C.; Zhang, R.; Li, Y.; Wu, J.; Li, F.-F. Voxposer: Composable 3d value maps for robotic manipulation with language models. arXiv 2023, arXiv:2307.05973. [Google Scholar]
- Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al. Palm: Scaling language modeling with pathways. J. Mach. Learn. Res. 2023, 24, 240. [Google Scholar]
- Rozenberszki, D.; Soros, G.; Szeier, S.; Lorincz, A. 3D Semantic Label Transfer in Human-Robot Collaboration. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Dong, S.; Xu, K.; Zhou, Q.; Tagliasacchi, A.; Chen, B. Multi-robot collaborative dense scene reconstruction. ACM Trans. Graph. (TOG) 2019, 38, 84. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, S.; Zhang, Y. 3D registration with maximal cliques. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17745–17754. [Google Scholar]
- Hu, K.; Chen, Z.; Kang, H.; Tang, Y. 3D vision technologies for a self-developed structural external crack damage recognition robot. Autom. Constr. 2024, 159, 105262. [Google Scholar] [CrossRef]
- Vazquez, G.D.B.; Lacapmesure, A.M.; Martínez, S.; Martínez, O.E. SUPPOSe 3Dge: A method for super-resolved detection of surfaces in volumetric fluorescence microscopy. J. Opt. Photonics Res. 2024, 16, 123–135. [Google Scholar]
- Grunnet-Jepsen, A.; Tong, D. Depth Post-Processing for Intel® Realsense™ d400 Depth Cameras; New Technologies Group, Intel Corporation: Santa Clara, CA, USA, 2018; Available online: https://www.intel.com/content/www/us/en/content-details/842031/content-details.html (accessed on 22 April 2025).
- Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu, H.; Tai, C.L. Pointdsc: Robust point cloud registration using deep spatial consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15859–15869. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435. [Google Scholar]
- Yew, Z.J.; Lee, G.H. Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833. [Google Scholar]
- Carreira, J.; Sminchisescu, C. CPMC: Automatic object segmentation using constrained parametric min-cuts. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1312–1328. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Wöhler, C. 3D Computer Vision: Efficient Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zhou, L.; Wu, G.; Zuo, Y.; Chen, X.; Hu, H. A Comprehensive Review of Vision-Based 3D Reconstruction Methods. Sensors 2024, 24, 2314. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, M. An Overview of Methods and Applications of 3D Reconstruction. Int. J. Comput. Sci. Inf. Technol. 2024, 3, 16–23. [Google Scholar] [CrossRef]
- Derpanis, K.G. Overview of the RANSAC Algorithm. Image Rochester NY 2010, 4, 2–3. [Google Scholar]
- Koch, A.; Dipanda, A.; Bourgeois République, C. Evolutionary-based 3D reconstruction using an uncalibrated stereovision system: Application of building a panoramic object view. Multimed. Tools Appl. 2012, 57, 565–586. [Google Scholar] [CrossRef]
- Choy, C.B.; Xu, D.; Gwak, J.; Chen, K.; Savarese, S. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part VIII 14; Springer: Cham, Switzerland, 2016; pp. 628–644. [Google Scholar]
- Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.; Geiger, A. Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4460–4470. [Google Scholar]
- Ma, Y.; Luo, Y.; Yang, Z. Geometric operator convolutional neural network. arXiv 2018, arXiv:1809.01016. [Google Scholar]
- Cao, W.; Yan, Z.; He, Z.; He, Z. A comprehensive survey on geometric deep learning. IEEE Access 2020, 8, 35929–35949. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, J.; Zhu, X.X. Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geosci. Remote Sens. Mag. 2020, 8, 38–59. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Y.; Jin, W.; Meng, X. Deep-Learning-Based Point Cloud Semantic Segmentation: A Survey. Electronics 2023, 12, 3642. [Google Scholar] [CrossRef]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Process. Syst. 2018, 848–857. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6411–6420. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 3001–3010. [Google Scholar]
- Qian, G.; Li, Y.; Peng, H.; Mai, J.; Hammoud, H.; Elhoseiny, M.; Ghanem, B. Pointnext: Revisiting pointnet++ with improved training and scaling strategies. Adv. Neural Inf. Process. Syst. 2022, 35, 23192–23204. [Google Scholar]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar]
- Lai, X.; Liu, J.; Jiang, L.; Wang, L.; Zhao, H.; Liu, S.; Qi, X.; Jia, J. Stratified transformer for 3d point cloud segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8500–8509. [Google Scholar]
- Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3523–3532. [Google Scholar]
- Chang, S.; Ahn, C.; Lee, M.; Oh, S. Graph-matching-based correspondence search for nonrigid point cloud registration. Comput. Vis. Image Underst. 2020, 192, 102899. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Wu, Q.; Hao, J.K. A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 2015, 242, 693–709. [Google Scholar] [CrossRef]
- Cheng, J.; Ke, Y.; Fu, A.W.C.; Yu, J.X.; Zhu, L. Finding maximal cliques in massive networks. ACM Trans. Database Syst. (TODS) 2011, 36, 21. [Google Scholar] [CrossRef]
- Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 1973, 16, 575–577. [Google Scholar] [CrossRef]
- Oomori, S.; Nishida, T.; Kurogi, S. Point cloud matching using singular value decomposition. Artif. Life Robot. 2016, 21, 149–154. [Google Scholar] [CrossRef]
- Fischer, A.; Izmailov, A.F.; Solodov, M.V. The Levenberg–Marquardt method: An overview of modern convergence theories and more. Comput. Optim. Appl. 2024, 89, 33–67. [Google Scholar] [CrossRef]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
- Handa, A.; Whelan, T.; McDonald, J.; Davison, A.J. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1524–1531. [Google Scholar]
- Handa, A.; Newcombe, R.A.; Angeli, A.; Davison, A.J. Real-time camera tracking: When is high frame-rate best? In Computer Vision–ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Proceedings, Part VII 12; Springer: Cham, Switzerland, 2012; pp. 222–235. [Google Scholar]
Rot. Error (deg) | Trans. Error | AUC | |||
---|---|---|---|---|---|
Algorithm | Mean | Std. Dev. | Mean | Std. Dev. | |
ICP | 11.87 | 31.87 | 0.0282 | 0.0392 | – |
PCRNet | 8.82 | 4.82 | 0.0077 | 0.0008 | 0.9544 |
Ours | 1.03 | 2.56 | 0.0085 | 0.0024 | 0.9943 |
Construct Graph | Filtered Points | RE (Rotation Error) | TE (Translation Error) | |
---|---|---|---|---|
3 pr | 410.2 ms | 2519 | 3.47 | 10.12 |
5 pr | 351.6 ms | 4033 | 1.13 | 2.22 |
8 pr | 384.0 ms | 4716 | 1.76 | 5.26 |
10 pr | 358.7 ms | 4823 | 0.83 | 2.49 |
15 pr | 406.1 ms | 4845 | 1.97 | 0.48 |
20 pr | 358.9 ms | 4813 | 2.85 | 8.27 |
Dataset | Method | Make Time | Register Time | Refine Time | Integrate Time | RMS |
---|---|---|---|---|---|---|
Bedroom | Open3D | 1 h 2 min 16.31 s | 41 min 47.54 s | 4 min 10.87 s | 2 min 09.60 s | 0.0169 |
Bedroom | Ours | 1 h 2 min 16.31 s | 03 min 20.35 s | 24.46 s | 1 min 44.96 s | 0.0076 |
Lounge | Open3D | 35 min 10.03 s | 16 min 27.79 s | 02 min 04.45 s | 1 min 07.48 s | 0.0260 |
Lounge | Ours | 35 min 10.03 s | 02 min 31.65 s | 26.32 s | 1 min 11.14 s | 0.0567 |
Dataset | Method | Make Time | Register Time | Refine Time | Integrate Time | RMS |
---|---|---|---|---|---|---|
Livingroom_0 | Open3D | 17 min 16.67 s | 03 min 41.70 s | 01 min 41.02 s | 36.55 s | 0.943 |
Livingroom_0 | Ours | 17 min 16.67 s | 38.22 s | 13.39 s | 38.70 s | 0.015 |
Livingroom_1 | Open3D | 12 min 21.79 s | 01 min 41.66 s | 27.06 s | 29.62 s | 0.122 |
Livingroom_1 | Ours | 12 min 21.79 s | 25.93 s | 10.05 s | 30.95 s | 0.133 |
Livingroom_2 | Open3D | 10 min 09.05 s | 01 min 23.64 s | 16.45 s | 25.12 s | 0.038 |
Livingroom_2 | Ours | 10 min 09.05 s | 18.80 s | 15.65 s | 28.72 s | 0.926 |
Livingroom_3 | Open3D | 18 min 38.48 s | 02 min 39.43 s | 56.67 s | 36.23 s | 0.051 |
Livingroom_3 | Ours | 18 min 38.48 s | 30.83 s | 18.96 s | 38.71 s | 0.990 |
Dataset | Method | Make Time | Register Time | Refine Time | Integrate Time |
---|---|---|---|---|---|
Real-world scene | Open3D | 21 min 33.14 s | 02 min 40.17 s | 02 min 48.06 s | 02 min 40.05 s |
Real-world scene | Ours | 21 min 33.14 s | 01 min 10.25 s | 02 min 36.74 s | 02 min 47.91 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, L.; Liu, N.; Li, Q.; Yuan, Y. Indoor Multidimensional Reconstruction Based on Maximal Cliques. Mathematics 2025, 13, 1400. https://doi.org/10.3390/math13091400
Zhu Y, Li L, Liu N, Li Q, Yuan Y. Indoor Multidimensional Reconstruction Based on Maximal Cliques. Mathematics. 2025; 13(9):1400. https://doi.org/10.3390/math13091400
Chicago/Turabian StyleZhu, Yongtong, Lei Li, Na Liu, Qingdu Li, and Ye Yuan. 2025. "Indoor Multidimensional Reconstruction Based on Maximal Cliques" Mathematics 13, no. 9: 1400. https://doi.org/10.3390/math13091400
APA StyleZhu, Y., Li, L., Liu, N., Li, Q., & Yuan, Y. (2025). Indoor Multidimensional Reconstruction Based on Maximal Cliques. Mathematics, 13(9), 1400. https://doi.org/10.3390/math13091400