Stroh–Hamiltonian Framework for Modeling Incompressible Poroelastic Materials
Abstract
:1. Introduction
2. Reversible Poroelasticity Under Incompressibility of Solid in a Poroelastic Material
3. Hamiltonian Formalism
4. Conservation and Integral Representation of Hamiltonian Density
- is a fundamental force vector,
- are modified Stroh matrices,
- and are spatial derivatives of the displacement fields,
- is related to fluid flow,
- is the fluid pressure,
- p is a Lagrange multiplier enforcing the incompressibility constraint.
4.1. Independence of
4.2. Canonical Equations
4.3. Integral Representation and Symplectic Structure
4.4. Connection to the Stroh Formalism
5. Conclusions
- The incorporation of the incompressibility condition into Biot’s poroelasticity allowed for the selection of appropriate energy–conjugate variable pairs, leading to a clearer description of the system.
- The Stroh-like formulation, grounded in Hamiltonian mechanics, provided a robust framework for analyzing poroelasticity under perfectly drained conditions, where dissipation is neglected.
- The absence of a fluid pressure gradient imposed constraints on the conjugate variables, reducing the degrees of freedom and offering a deeper insight into the reversible behavior of the system.
- Our findings demonstrate the utility of the Hamiltonian formalism in theoretical studies and in designing experiments for systems where incompressibility constraints are relevant, ensuring an accurate assessment of mechanical properties and their coupling with fluid effects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stroh, A.N. Steady State Problems in Anisotropic Elasticity. J. Math. Phys. 1962, 41, 77–103. [Google Scholar] [CrossRef]
- Hwu, C.; Becker, W. Stroh formalism for various types of materials and deformations. J. Mech. 2022, 38, 433–444. [Google Scholar] [CrossRef]
- Edmondson, R.; Fu, Y. Stroh formulation for a generally constrained and pre-stressed elastic material. Int. J. Non-Linear Mech. 2009, 44, 530–537. [Google Scholar] [CrossRef]
- Chadwick, P. The application of the Stroh formalism to prestressed elastic media. Math. Mech. Solids 1997, 2, 379–403. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Chen, Q.; Huang, K.; Xue, Y. Study on the attributes of transverse surface waves in a layered piezoelectric semi-space with surface elasticity theory and Extended Stroh formalism. Thin-Walled Struct. 2024, 202, 112084. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, F.; Pan, E. Defects and waves in anisotropic and layered media: Stroh formalism in terms of the Cartesian system of vector functions. J. Mech. 2024, 40, 687–697. [Google Scholar] [CrossRef]
- Wu, K.C. Extension of Stroh’s formalism to self-similar problems in two-dimensional elastodynamics. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 456, 869–890. [Google Scholar] [CrossRef]
- Houyouk, J.; Manyo Manyo, J.A.; Ntamack, G.E.; Azrar, L. Transmission and Reflection and Coefficients of the Periodic Thermoelastic Multilayer Structures with Effect of Interface Using the Pseudo-Stroh Formalism. In Advances in Integrated Design and Production II, Proceedings of the 12th International Conference on Integrated Design and Production, CPI 2022, ENSAM, Rabat, Morocco, 10–12 May 2022; Springer Nature: Cham, Switzerland, 2023; p. 273. [Google Scholar] [CrossRef]
- Pan, E.; Zhu, F.; Li, N.; Qu, Y. Lamb waves in piezoelectric and flexoelectric plates: A new Stroh formalism for gradient electro-mechanics. 2023. [Google Scholar] [CrossRef]
- Färm, A.; Boij, S.; Glav, R.; Dazel, O. Absorption of sound at a surface exposed to flow and temperature gradients. Appl. Acoust. 2016, 110, 33–42. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.Y.; Chen, W. Characteristics of poroelastic deformation and dissipation of heat and pore pressure in fluid-saturated porous strata. Comput. Geotech. 2024, 167, 106046. [Google Scholar] [CrossRef]
- Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 2017, 47, 83–114. [Google Scholar] [CrossRef]
- Benjamin, G.; Neil, R.; Daniel, B.; Hamid, K. Impacts of poroelastic spheres. arXiv 2024, arXiv:2411.05891. [Google Scholar] [CrossRef]
- Corapcioglu, M.Y.; Tuncay, K. Propagation of waves in porous media. In Advances in Porous Media; Elsevier: Amsterdam, The Netherlands, 1996; Volume 3, pp. 361–440. [Google Scholar] [CrossRef]
- Berryman, J.G.; Wang, H.F. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 2000, 37, 63–78. [Google Scholar] [CrossRef]
- Pramanik, D.; Manna, S.; Nobili, A. Theory of elastic wave propagation in a fluid-saturated multi-porous medium with multi-permeability. Proc. R. Soc. A 2024, 480, 20230863. [Google Scholar] [CrossRef]
- Sharma, M. Piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1977–1992. [Google Scholar] [CrossRef]
- Chen, H.; Gilbert, R.P.; Guyenne, P. A biot model for the determination of material parameters of cancellous bone from acoustic measurements. Inverse Probl. 2018, 34, 085009. [Google Scholar] [CrossRef]
- Shao, J. Poroelastic behaviour of brittle rock materials with anisotropic damage. Mech. Mater. 1998, 30, 41–53. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Stovas, A.; Wang, L. Modified Biot elastic coefficients in poroelastic solid. J. Earth Sci. 2024, 35, 1397–1401. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Marji, M.F.; Bafghi, A.Y.; Gholamnejad, J. A complete formulation of an indirect boundary element method for poroelastic rocks. Comput. Geotech. 2016, 74, 15–25. [Google Scholar] [CrossRef]
- Barnett, D.M. Bulk, surface, and interfacial waves in anisotropic linear elastic solids. Int. J. Solids Struct. 2000, 37, 45–54. [Google Scholar] [CrossRef]
- Fu, Y. Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 3073–3087. [Google Scholar] [CrossRef]
- Nobili, A.; Radi, E. Hamiltonian/Stroh formalism for anisotropic media with microstructure. Philos. Trans. R. Soc. A 2022, 380, 20210374. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A. Hamiltonian/Stroh formalism for reversible poroelasticity (and thermoelasticity). Int. J. Solids Struct. 2024, 301, 112935. [Google Scholar] [CrossRef]
- Nobili, A.; Pichugin, A. Quasi-adiabatic approximation for thermoelastic surface waves in orthorhombic solids. Int. J. Eng. Sci. 2021, 161, 103464. [Google Scholar] [CrossRef]
- Biot, M. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Berger, L.; Bordas, R.; Kay, D.; Tavener, S. A stabilized finite element method for nonlinear poroelasticity. Comput. Methods Appl. Mech. Eng. 1999, 174, 299–317. [Google Scholar]
- Abousleiman, Y.; Ekbote, S. Porothermoelasticity in transversely isotropic porous materials. In Proceedings of the IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, Stuttgart, Germany, 5–10 September 1999; Springer: Berlin/Heidelberg, Germany, 2002; pp. 145–152. [Google Scholar] [CrossRef]
- Schanz, M. Poroelastodynamics: Linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 2009, 62, 1–15. [Google Scholar] [CrossRef]
- Biot, M.A.; Willis, D.G. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 1957, 24, 594–601. [Google Scholar] [CrossRef]
- Biot, M. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 1955, 26, 182–185. [Google Scholar] [CrossRef]
- Ting, T.C. Anisotropic Elasticity: Theory and Applications; Oxford University Press: Oxford, UK, 1996; Volume 45. [Google Scholar]
Symbol | Description |
---|---|
Displacement field of the solid phase | |
Displacement field of the fluid phase | |
Seepage displacement () | |
f | Effective porosity (non-uniform) |
e | Volumetric strain of the solid () |
Volumetric strain of the fluid () | |
Volumetric strain of the fluid phase () | |
Total stress tensor | |
Effective stress tensor in the solid phase | |
Fluid pressure (positive in compression) | |
Effective stress coefficient () | |
m | Compressibility modulus of the fluid |
Linear deformation tensor | |
r | Cross-coupling term between solid and fluid phases |
Elastic moduli tensor of the solid skeleton | |
Stroh matrices | |
Fundamental force vectors | |
L | Lagrangian density |
H | Hamiltonian density |
Positive constant ensuring positive definiteness of | |
Modified Stroh matrices | |
Total energy functional | |
W | Stored potential energy density |
p | Lagrange multiplier enforcing incompressibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, K.; Tibullo, V. Stroh–Hamiltonian Framework for Modeling Incompressible Poroelastic Materials. Mathematics 2025, 13, 1436. https://doi.org/10.3390/math13091436
Arshad K, Tibullo V. Stroh–Hamiltonian Framework for Modeling Incompressible Poroelastic Materials. Mathematics. 2025; 13(9):1436. https://doi.org/10.3390/math13091436
Chicago/Turabian StyleArshad, Kinza, and Vincenzo Tibullo. 2025. "Stroh–Hamiltonian Framework for Modeling Incompressible Poroelastic Materials" Mathematics 13, no. 9: 1436. https://doi.org/10.3390/math13091436
APA StyleArshad, K., & Tibullo, V. (2025). Stroh–Hamiltonian Framework for Modeling Incompressible Poroelastic Materials. Mathematics, 13(9), 1436. https://doi.org/10.3390/math13091436