There Are Quantum Jumps
Abstract
:1. Introduction
2. Level Crossings by Analytic Extensions
3. The Case of Photon Emission by an Atom
4. Partitioning Technique
5. Conclusions
Appendix
Conflicts of Interest
References
- Moore, W. Schrödinger Life and Thought; Cambridge University Press: Cambridge, New York, NY, USA, 1989. [Google Scholar]
- Schrödinger, E. Are there quantum jumps? Br. J. Philos. Sci. 1952, 3, 233–247. [Google Scholar] [CrossRef]
- Bell, J.S. Are there quantum jumps? In Schrödinger, Centenary of a Polymath; Kilmister, C., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 41–52. [Google Scholar]
- Unstable States in the Continuous Spectra, Part I: Analysis, Concepts, Methods, and Result; Nicolaides, C.A.; Brändas, E.J. (Eds.) Elsevier: Amsterdam, The Netherlands, 2010.Adv. Quant. Chem. 2010, 60, 1–549, ibid.Unstable States in the Continuous Spectra, Part II: Interpretation, Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2013.Adv. Quant. Chem. 2012, 63, 1–348.
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- Brändas, E.J. Arrows of Time and Fundamental Symmetries in Chemical Physics. Int. J. Quant. Chem. 2013, 113, 173–184. [Google Scholar] [CrossRef]
- Balslev, E.; Combes, J.M. Spectral Properties of Many-Body Schrödinger Operators with Dilatation-Analytic Interactions. Commun. Math. Phys. 1971, 22, 280–294. [Google Scholar] [CrossRef]
- Macomber, J.D. The Dynamics of Spectroscopic Transitions; John Wiley & Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Brändas, E.J. Complex Symmetric Forms and the Emergence of Jordan Blocks in Analytically Extended Quantum Theory. Int. J. Comp. Math. 2009, 86, 315–319. [Google Scholar] [CrossRef]
- Domcke, W.; Yarkony, D.R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Ann. Rev. Phys. Chem. 2012, 63, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Brändas, E.J.; Froelich, P. Level Crossings and Branch Points Studied by the Multidimensional Partitioning Technique. Int. J. Quant. Chem. 1978, 13, 619–626. [Google Scholar] [CrossRef]
- Löwdin, P.O. Linear Algebra for Quantum Theory; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Steck, D. Rubidium 87 D line Data; ; Department of Physics, University of Oregon, Eugene, Oregon. revision 2.1.4. Department of Physics, University of Oregon: Eugene, Oregon. Available online: http://steck.us/alkalidata (accessed on 23 December 2010).
- Hehenberger, M.; McIntosh, H.V.; Brändas, E.J. Weyl’s theory applied to the Stark effect in the hydrogen atom. Phys. Rev. 1974, A10, 1494–1506. [Google Scholar] [CrossRef]
- Howland, J.S. Complex scaling of ac Stark Hamiltonians. J. Math. Phys. 1983, 24, 1240–1245. [Google Scholar] [CrossRef]
- Brändas, E.J. The Relativistic Kepler Problem and Gödel’s Paradox. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications; Nishikawa, K., Maruani, J., Brändas, E.J., Delgado-Barrio, G., Piecuch, P., Eds.; Springer Verlag: Heidelberg, Germany, 2012; Volume 26, pp. 3–22. [Google Scholar]
- Brändas, E.J. A Zero Energy Universe Scenario: From Unstable Chemical States to Biological Evolution and Cosmological Order. In Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics; Nascimento, M.A.C., Maruani, J., Brändas, E.J., Delgado-Barrio, G., Eds.; Springer Verlag: Heidelberg, Germany, 2015; Volume 29, pp. 247–284. [Google Scholar]
- Brändas, E.J. A comment on background independence in quantum theory. J. Chin. Chem. Soc. 2015, in press. [Google Scholar]
- Brändas, E.J. Some Biochemical Reflections on Information and Communication. In Advances in Quantum Methods and Applications in Chemistry, Physics and Biology. Progress in Theoretical Chemistry and Physics; Springer Verlag: Heidelberg, Germany, 2013; Volume B 27, pp. 75–98. [Google Scholar]
- Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin, Germany, 2003. [Google Scholar]
- Brändas, E.J. Examining the Limits of Physical Theory: Analytic Principles and Logical Implications. Adv. Quant. Chem. 2012, 63, 33–117. [Google Scholar]
- Reid, C.E.; Brändas, E.J. On a Theorem for Complex Symmetric Matrices and its Relevance in the Study of Decay Phenomena. Lect. Notes Phys. 1989, 325, 475–483. [Google Scholar]
- Brändas, E.J. Some comments on the Problem of Decoherence. Int. J. Quant. Chem. 2011, 111, 215–224. [Google Scholar] [CrossRef]
- Bombelli, L.; Lee, J.-H.; Meyer, D.; Sorkin, R. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521–524. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brändas, E.J. There Are Quantum Jumps. Mathematics 2015, 3, 319-328. https://doi.org/10.3390/math3020319
Brändas EJ. There Are Quantum Jumps. Mathematics. 2015; 3(2):319-328. https://doi.org/10.3390/math3020319
Chicago/Turabian StyleBrändas, Erkki J. 2015. "There Are Quantum Jumps" Mathematics 3, no. 2: 319-328. https://doi.org/10.3390/math3020319
APA StyleBrändas, E. J. (2015). There Are Quantum Jumps. Mathematics, 3(2), 319-328. https://doi.org/10.3390/math3020319