A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus
Abstract
:1. Introduction, Definitions and Preliminaries
2. A Class of Extended Mittag–Leffler Functions
3. Basic Properties of
4. Integral Transforms of
4.1. Laplace Transform
4.2. Mellin Transform
4.3. Euler-Beta Transform
5. Fractional Calculus Operators of
Acknowledgments
Conflicts of Interest
References
- Chaudhry, M.A.; Qadir, A.; Raflque, M.; Zubair, S.M. Extension of Euler’s Beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall (CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2002. [Google Scholar]
- Luo, M.; Raina, R.K. Extended generalized hypergeometric functions and their applications. Bull. Math. Anal. Appl. 2013, 5, 65–77. [Google Scholar]
- Özarslan, M.A.; Özergin, E. Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Özergin, E.; Özarslan, M.A.; Altın, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Parmar, R.K.; Chopra, P. A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions. Axioms 2012, 1, 238–258. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions, 2nd ed.; Chelsea Publishing Company: Bronx, New York, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, AB, Canada, 1985. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sur la representation analytiqui d’une fonction monogene (cinquieme note). Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Wiman, A. Über den fundamental satz in der theorie der functionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die nullstellun der funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Agarwal, R.P. A propos d’une Note M. Pierre Humbert. C. R. Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
- Humbert, P. Quelques resultats d’le fonction de Mittag-Leffler. C. R. Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
- Humbert, P.; Agarwal, R.P. Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. 1953, 77, 180–185. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Leffler type functions. Integr. Transf. Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler function and their applications. J. Appl. Math. 2011. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. Fractional integrals and derivatives of Mittag-Leffler type function (Russian). Dokl. Akad. Nauk Belarusi 1995, 39, 22–26. [Google Scholar]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Ser. Analytic Methods and Special Functions; CRC Press: London, UK; New York, NY, USA, 2004; Volume 9. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Saxena, R.K. Certain properties of generalized Mittag-Leffler function. In Proceedings of the Third Annual Conference of the Society for Special Functions and Their Applications, Varanasi, India, 4–6 March 2002; Volume 3, pp. 75–81.
- Saxena, R.K.; Saigo, M. Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 2005, 8, 141–154. [Google Scholar]
- Özarslan, M.A.; Yilmaz, B. The extended Mittag-Leffler function and its properties. J. Inequal. Appl. 2014, 85, 1–10. [Google Scholar] [CrossRef]
- Sneddon, I.N. The use of the Integral Transforms; Tata McGraw-Hill: New Delhi, India, 1979. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric functions. J. Lond. Math. Soc. 1935, 19, 286–293. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric functions. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Fox, C. The G and H-functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Mathai, A.M.; Saxena, R.K. The H-Functions with Applications in Statistics and Other Disciplines; John Wiley and Sons: New York, NY, USA; London, UK; Sydney, Australia, 1978. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Functions: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherland; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000.
- Srivastava, H.M.; Tomovski, Ẑ. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, R.K. A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus. Mathematics 2015, 3, 1069-1082. https://doi.org/10.3390/math3041069
Parmar RK. A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus. Mathematics. 2015; 3(4):1069-1082. https://doi.org/10.3390/math3041069
Chicago/Turabian StyleParmar, Rakesh K. 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus" Mathematics 3, no. 4: 1069-1082. https://doi.org/10.3390/math3041069
APA StyleParmar, R. K. (2015). A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus. Mathematics, 3(4), 1069-1082. https://doi.org/10.3390/math3041069