Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay
Abstract
:1. Introduction
2. Preliminaries
- ()
- is in ;
- ()
- ()
- , where is a constant and is continuous, is locally bounded, and are independent of .
- ()
- The function is well described and continuous from the set:
- (i)
- is measurable for each ;
- (ii)
- is upper semicontinuous for almost all .
- (i)
- (ii)
3. Existence Results
- (i)
- If , then:
- (ii)
4. Applications
- (i)
- the functions are continuous;
- (ii)
- the function is continuous in ; and
- (iii)
- the function is continuous in and
- (iv)
- the functions are continuous and for .
- (v)
- The function is continuous and for each where is a continuous non-decreasing function.Now, consider:Since is a continuous non-decreasing function, we will take with and in hypothesis (4). Observe that meets the hypothesis (3) with , and, if the bounds in Equation (6) are fulfilled, then model (7)–(10) has a mild solution on .
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Agarwal, R.P.; Lupulescu, V.; O’Regan, D.; Rahman, G. Fractional calculus and fractional differential equations in nonreflexive Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 59–73. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaed, A. Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions. Adv. Differ. Equ. 2014, 2014, 257. [Google Scholar] [CrossRef]
- Babiarz, A.; Niezabitowski, M. Controllability problem of fractional neutral systems-a survey. Math. Probl. Eng. 2016, 2016, 4715861. [Google Scholar] [CrossRef]
- Bonanno, G.; Rodriguez-Lopez, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 717–744. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Z.; Zeng, C. Weighted pseudo almost automorphic classical solutions and optimal mild solutions for fractional differential equations and application in fractional reaction-diffusion equations. J. Math. Chem. 2014, 52, 1984–2012. [Google Scholar] [CrossRef]
- Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral fractional integrodifferential equation with infinite delay. Int. J. Differ. Equ. 2014, 2014, 780636. [Google Scholar] [CrossRef]
- Debbouche, A.; Torres, D.F.M. Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 2014, 243, 161–175. [Google Scholar] [CrossRef]
- Guendouzi, T.; Bousmaha, L. Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay. Qual. Theory Dyn. Syst. 2014, 13, 89–119. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D.; Balachandran, K. On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. Real World Appl. 2010, 73, 3462–3471. [Google Scholar] [CrossRef]
- Lv, Z.W.; Chen, B. Existence and uniqueness of positive solutions for a fractional switched system. Abstr. Appl. Anal. 2014, 2014, 828721. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1016–1038. [Google Scholar] [CrossRef]
- Shu, X.B.; Lai, Y.Z.; Chen, Y. The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2003–2011. [Google Scholar] [CrossRef]
- Vasundhara Devi, J.; Giribabu, N. On hybrid Caputo fractional differential equations with variable moments of impulse. Eur. J. Pure Appl. Math. 2014, 7, 115–128. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G.; Feckan, M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 2015, 257, 103–118. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters. Adv. Differ. Equ. 2014, 2014, 268. [Google Scholar] [CrossRef]
- Aissani, K.; Benchohra, M. Impulsive fractional differential inclusions with infinite delay. Electron. J. Differ. Equ. 2013, 2013, 265. [Google Scholar]
- Benchohra, M.; Litimein, S.; Trujillo, J.J.; Velasco, M.P. Abstract fractional integro-differential equations with state-dependent delay. Int. J. Evol. Equ. 2012, 6, 25–38. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G. Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces. J. Funct. Spaces 2013, 2013, 518306. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Andrade, B.D. On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1143–1149. [Google Scholar] [CrossRef]
- Aissani, K.; Benchohra, M. Fractional integro-differential equations with state-dependent delay. Adv. Dyn. Syst. Appl. 2014, 9, 17–30. [Google Scholar]
- Benchohra, M.; Litimein, S.; Guerekata, G.N. On fractional integro-differential inclusions with state-dependent delay in Banach spaces. Appl. Anal. 2013, 92, 335–350. [Google Scholar] [CrossRef]
- Benchohra, M.; Berhoun, F. Impulsive fractional differential equations with state-dependent delay. Commun. Appl. Anal. 2010, 14, 213–224. [Google Scholar]
- Dabas, J.; Gautam, G.R. Impulsive neutral fractional integro-differential equation with state-dependent delay and integral boundary condition. Electron. J. Differ. Equ. 2013, 2013, 273. [Google Scholar]
- Dabas, J.; Chauhan, A.; Kumar, M. Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011, 2011, 793023. [Google Scholar] [CrossRef]
- Darwish, M.A.; Ntouyas, S.K. Semilinear functional differential equations of fractional order with state-dependent delay. Electron. J. Differ. Equ. 2009, 2009, 38. [Google Scholar]
- Dos Santos, J.P.C.; Arjunan, M.M.; Cuevas, C. Existence results for fractional neutral integrodifferential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1275–1283. [Google Scholar] [CrossRef]
- Dos Santos, J.P.C.; Cuevas, C.; de Andrade, B. Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011, 2011, 642013. [Google Scholar] [CrossRef]
- Guendouzi, T.; Benzatout, O. Existence of mild solutions for impulsive fractional stochastic differential inclusions with state-dependent delay. Chin. J. Math. 2014, 2014, 981714. [Google Scholar] [CrossRef]
- Kavitha, V.; Wang, P.Z.; Murugesu, R. Existence results for neutral functional fractional differential equations with state dependent-delay. Malaya J. Mat. 2012, 1, 50–61. [Google Scholar]
- Yan, Z.; Zhang, H. Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay. Electron. J. Differ. Equ. 2013, 2013, 1–21. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
- Stamova, I.M. Stability Analysis of Impulsive Functional Differential Equations; De Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Graef, J.R.; Henderson, J.; Ouahab, A. Impulsive Differential Inclusions: A Fixed Point Approach; Walter de Gruyter GmbH: Berlin, Germany, 2013. [Google Scholar]
- Bainov, D.; Covachev, V. Impulsive Differential Equations with a Small Parameter; World Scientific Publishing Corporation: Singapore, 1995. [Google Scholar]
- Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive Differential Equations and Inclusions. In Contemporary Mathematics and Its Applications; Hindawi Publishing Corporation: New York, NY, USA, 2006; Volume 2. [Google Scholar]
- Balachandran, K.; Annapoorani, N. Existence results for impulsive neutral evolution integrodifferential equations with infinite delay. Nonlinear Anal. Hybrid Syst. 2009, 3, 674–684. [Google Scholar] [CrossRef]
- Chang, Y.K.; Anguraj, A.; Arjunan, M.M. Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear Anal. Hybrid Syst. 2008, 2, 209–218. [Google Scholar] [CrossRef]
- Hernandez, E.; Anguraj, A.; Arjunan, M.M. Existence results for an impulsive second order differential equation with state-dependent delay. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2010, 17, 287–301. [Google Scholar]
- Hernandez, E.; Pierri, M.; Goncalves, G. Existence results for an impulsive abstract partial differential equation with state-dependent delay. Comput. Math. Appl. 2006, 52, 411–420. [Google Scholar] [CrossRef]
- Liu, J.H. Nonlinear impulsive evolution equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 1999, 6, 77–85. [Google Scholar]
- Arjunan, M.M.; Kavitha, V. Existence results for impulsive neutral functional differential equations with state-dependent delay. Electron. J. Qual. Theory Differ. Equ. 2009, 26, 1–13. [Google Scholar] [CrossRef]
- Pandey, D.N.; Das, S.; Sukavanam, N. Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses. Int. J. Nonlinear Sci. 2014, 18, 145–155. [Google Scholar]
- Park, J.Y.; Jeong, J.U. Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Differ. Equ. 2014, 2014, 17. [Google Scholar] [CrossRef]
- Wang, J.R.; Feckan, M. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015, 46, 915–934. [Google Scholar] [CrossRef]
- Babiarz, A.; Klamka, J.; Niezabitowski, M. Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 2016, 26, 263–275. [Google Scholar] [CrossRef]
- Klamka, J.; Babiarz, A.; Niezabitowski, M. Banach fixed-point theorem in semilinear controllability problems—A survey. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 21–35. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 2015, 39, 85–90. [Google Scholar] [CrossRef]
- Wang, J.R.; Feckan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part. Differ. Equ. 2011, 8, 345–361. [Google Scholar]
- Bajlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, October 2001. [Google Scholar]
- Fu, X.; Huang, R. Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 2013, 224, 743–759. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Bohnenblust, H.F.; Karlin, S. On a Theorem of Ville, Contribution to the Theory of Games, Annals of Mathematics Studies, No. 24; Princeton University Press: Princeton, NJ, USA, 1950; pp. 155–160. [Google Scholar]
- Górniewicz, L. Topological Fixed Point Theory of Multivalued Mappings; Mathematics and Its Applications, 495; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Brown, R.F. A Topological Introduction to Nonlinear Analysis; Springer: Bosten, Switzerland, 2014. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suganya, S.; Mallika Arjunan, M. Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay. Mathematics 2017, 5, 9. https://doi.org/10.3390/math5010009
Suganya S, Mallika Arjunan M. Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay. Mathematics. 2017; 5(1):9. https://doi.org/10.3390/math5010009
Chicago/Turabian StyleSuganya, Selvaraj, and Mani Mallika Arjunan. 2017. "Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay" Mathematics 5, no. 1: 9. https://doi.org/10.3390/math5010009
APA StyleSuganya, S., & Mallika Arjunan, M. (2017). Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay. Mathematics, 5(1), 9. https://doi.org/10.3390/math5010009