A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation
Abstract
:1. Introduction
“Suppose is a group and is a metric group with the metric . Given , does there exist a such that if a function satisfies inequality for all , then there exists a homomorphism with for all ?
2. Main Results
- (i)
- for all ;
- (ii)
- the sequence is convergent to a fixed point of J;
- (iii)
- is the unique fixed point of J in ;
- (iv)
- for all .
3. Applications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1960; Chapter VI. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequ. Math. 1995, 50, 143–190. [Google Scholar] [CrossRef]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequ. Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Jung, S.-M.; Sahoo, P.K. On the stability of a mean value type functional equation. Demonstr. Math. 2000, 33, 793–796. [Google Scholar]
- Aczél, J. A mean value property of the derivative of quadratic polynomials—Without mean values and derivatives. Math. Mag. 1985, 58, 42–45. [Google Scholar] [CrossRef]
- Haruki, S. A property of quadratic polynomials. Am. Math. Mon. 1979, 86, 577–579. [Google Scholar] [CrossRef]
- Kannappan, P.L.; Sahoo, P.K.; Jacobson, M.S. A characterization of low degree polynomials. Demonstr. Math. 1995, 28, 87–96. [Google Scholar]
- Sahoo, P.K.; Riedel, T. Mean Value Theorems and Functional Equations; World Scientific: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 1998. [Google Scholar]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Cădariu, L.; Radu, V. Fixed points and the stability of quadratic functional equations. An. Univ. Timisoara Ser. Mat.-Inform. 2003, 41, 25–48. [Google Scholar]
- Cădariu, L.; Radu, V. On the Stability of the Cauchy Functional Equation: A Fixed Point Approach in Iteration Theory; Grazer Mathematische Berichte; Karl-Franzens-Universitäet: Graz, Austria, 2004; Volume 346, pp. 43–52. [Google Scholar]
- Choi, G.; Jung, S.-M.; Lee, Y.-H. Approximation properties of solutions of a mean value type functional inequalities. J. Nonlinear Sci. Appl. 2017, 10, 4507–4514. [Google Scholar] [CrossRef]
- Shehu, Y.; Cai, G.; Iyiola, O.S. Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015, 2015, 123. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Rus, I.A. Principles and Applications of Fixed Point Theory; Dacia: Cluj-Napoca, Romania, 1979. (In Romanian) [Google Scholar]
- Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-M.; Lee, Y.-H. A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation. Mathematics 2017, 5, 78. https://doi.org/10.3390/math5040078
Jung S-M, Lee Y-H. A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation. Mathematics. 2017; 5(4):78. https://doi.org/10.3390/math5040078
Chicago/Turabian StyleJung, Soon-Mo, and Yang-Hi Lee. 2017. "A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation" Mathematics 5, no. 4: 78. https://doi.org/10.3390/math5040078
APA StyleJung, S. -M., & Lee, Y. -H. (2017). A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation. Mathematics, 5(4), 78. https://doi.org/10.3390/math5040078