Isomorphic Classification of Reflexive Müntz Spaces
Abstract
:1. Introduction
2. The Müntz Spaces
3. The Potential Transform for Reflexive Müntz Spaces
4. Isomorphic Classification
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gurariy, V.I.; Lusky, W. Geometry of Müntz spaces and related questions. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 2005. [Google Scholar]
- Gurariy, V.I. Bases in spaces of continuous functions on compacts and some geometrical questions. Math. USSR Izvestija 1966, 30, 289–306. [Google Scholar]
- Jarchow, H. Locally Convex Spaces; Teubner, B.G., Ed.; Springer: Stuttgart, Germany, 1981. [Google Scholar]
- Ludkowski, S.V.; Lusky, W. On the geometry of Müntz spaces. J. Funct. Spaces 2015, 1–7. [Google Scholar] [CrossRef]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces I and II; A Series of Modern Surveys in Mathematics; Springer-Verlag: Berlin, Germany, 1979. [Google Scholar]
- Ludkovsky, S.V. κ-normed topological vector spaces. Sibirskii Matematicheskii Zhurnal 2000, 41, 141–154. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Duality of κ-normed topological vector spaces and their applications. J. Math. Sci. 2009, 157, 367–385. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Approximation in Müntz spaces MΛ,p of Lp functions for 1 < p < ∞ and bases. Mathematics 2017, 5, 10. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Approximation and existence of Schauder bases in Müntz spaces of L1 functions. J. Math. Anal. Appl. 2016, 441, 635–647. [Google Scholar] [CrossRef]
- Lusky, W. On Banach spaces with the commuting bounded approximation property. Arch. Math. 1992, 58, 568–574. [Google Scholar] [CrossRef]
- Lusky, W. On Banach spaces with bases. J. Funct. Anal. 1996, 138, 410–425. [Google Scholar] [CrossRef]
- Lusky, W. Three space properties and basis extensions. Isr. J. Math. 1998, 107, 17–27. [Google Scholar] [CrossRef]
- Lusky, W. Three space problems and bounded approximation property. Stud. Math. 2003, 159, 417–434. [Google Scholar] [CrossRef]
- Lusky, W. On Banach spaces with unconditional bases. Isr. J. Math. 2004, 143, 239–251. [Google Scholar] [CrossRef]
- Narici, L.; Beckenstein, E. Topological Vector Spaces; Marcel Dekker, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Schauder, J. Zur Theorie stetiger Abbildungen in Funktionalraumen. Math. Z. 1927, 26, 47–65. [Google Scholar] [CrossRef]
- Schwartz, L. Étude des Sommes D’exponentielles, 2-éme ed.; Hermann: Paris, France, 1959. [Google Scholar]
- Semadeni, Z. Schauder Bases in Banach Spaces of Continuous Functions; Springer: Berlin, Germany, 1982. [Google Scholar]
- Wojtaszczyk, P. Banach Spaces for Analysts; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Almira, J.M. Müntz type theorems I. Surv. Approx. Theory 2007, 3, 152–194. [Google Scholar]
- Clarkson, J.A.; Erdös, P. Approximation by polynomials. Duke Math. J. 1943, 10, 5–11. [Google Scholar] [CrossRef]
- Christensen, J.P.R. Topology and Borel Structure; North-Holland Mathematics Studies 10; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Zaanen, A.C. Continuity, Integration and Fourier Theory; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bremermann, H. Distributions, Complex Variables, and Fourier Transforms; Addison-Wesley Publ. Co., Inc.: Boston, MA, USA, 1965. [Google Scholar]
- Butzer, P.L.; Nessel, R.J. Fourier Analysis and Approximation; Birkhäuser: Basel, Switzerland, 1971. [Google Scholar]
- Edwards, R.E. Functional Analysis; Holt, Rinehart and Winston: New York, NY, USA, 1965. [Google Scholar]
- Sneddon, I.H. The Use of Integral Transforms; McGraw Hill Book Co.: New York, NY, USA, 1972. [Google Scholar]
- Widder, D.V. An Introduction to Transform Theory; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1972. [Google Scholar]
- Widder, D.V. The Stieltjes transform. Trans. Am. Math. Soc. 1938, 43, 7–60. [Google Scholar] [CrossRef]
- Zhizhiashvili, L. Trigonometric Fourier Series and Their Conjugates; Mathematics and Its Applications; Kluwer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Kuzmin, V.I.; Samokhin, A.B. Almost periodic functions with trend. Russ. Technol. J. 2015, 2, 105–107. [Google Scholar]
- Denisov, V.E. Analysis of distortions in high-frequency pulse acoustic signals with linear frequency modulation in a hydroacoustic communication channels. Russ. Technol. J. 2017, 4, 34–41. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludkowski, S.V. Isomorphic Classification of Reflexive Müntz Spaces. Mathematics 2017, 5, 83. https://doi.org/10.3390/math5040083
Ludkowski SV. Isomorphic Classification of Reflexive Müntz Spaces. Mathematics. 2017; 5(4):83. https://doi.org/10.3390/math5040083
Chicago/Turabian StyleLudkowski, Sergey V. 2017. "Isomorphic Classification of Reflexive Müntz Spaces" Mathematics 5, no. 4: 83. https://doi.org/10.3390/math5040083
APA StyleLudkowski, S. V. (2017). Isomorphic Classification of Reflexive Müntz Spaces. Mathematics, 5(4), 83. https://doi.org/10.3390/math5040083