Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator
Abstract
:1. Introduction
2. Trans-Sasakian Manifolds
3. Reeb Flow Invariant Ricci Operator on Trans-Sasakian 3-Manifolds
- (1)
- The Reeb vector field is minimal or harmonic.
- (2)
- The following equation holds: (⇔).
- (3)
- The Reeb vector field is an eigenvector field of the Ricci operator.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Marrero, J.C. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 1992, 162, 77–86. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y. A Remark on Trans-Sasakian 3-Manifolds. Unpublished work.
- Aktan, N.; Yildirim, M.; Murathan, C. Almost f-cosymplectic manifolds. Mediterr. J. Math. 2014, 11, 775–787. [Google Scholar] [CrossRef]
- Mangione, V. Harmonic maps and stability on f-Kenmotsu manifolds. Int. J. Math. Math. Sci. 2008, 2008. [Google Scholar] [CrossRef]
- Olszak, Z.; Rosca, R. Normal locally conformal almost cosymplectic manifolds. Publ. Math. Debrecen 1991, 39, 315–323. [Google Scholar]
- Yildiz, A.; De, U.C.; Turan, M. On 3-dimensional f-Kenmotsu manifolds and Ricci solitons. Ukrainian Math. J. 2013, 65, 684–693. [Google Scholar] [CrossRef]
- De, U.C.; De, K. On a class of three-dimensional trans-Sasakian manifolds. Commun. Korean Math. Soc. 2012, 27, 795–808. [Google Scholar] [CrossRef]
- De, U.C.; Mondal, A. On 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Commun. Korean Math. Soc. 2009, 24, 265–275. [Google Scholar] [CrossRef]
- De, U.C.; Mondal, A.K. The structure of some classes of 3-dimensional normal almost contact metric manifolds. Bull. Malays. Math. Sci. Soc. 2013, 36, 501–509. [Google Scholar]
- De, U.C.; Sarkar, A. On three-dimensional trans-Sasakian manifolds. Extr. Math. 2008, 23, 265–277. [Google Scholar] [CrossRef]
- De, U.C.; Yildiz, A.; Yalınız, A.F. Locally φ-symmetric normal almost contact metric manifolds of dimension 3. Apll. Math. Lett. 2009, 22, 723–727. [Google Scholar] [CrossRef]
- Deshmukh, S.; Tripathi, M.M. A Note on compact trans-Sasakian manifolds. Math. Slovaca 2013, 63, 1361–1370. [Google Scholar] [CrossRef]
- Deshmukh, S. Trans-Sasakian manifolds homothetic to Sasakian manifolds. Mediterr. J. Math. 2016, 13, 2951–2958. [Google Scholar] [CrossRef]
- Deshmukh, S. Geometry of 3-dimensional trans-Sasakaian manifolds. An. Stiint. Univ. Al. I Cuza Iasi Mat. 2016, 63, 183–192. [Google Scholar] [CrossRef]
- Deshmukh, S.; Al-Solamy, F. A Note on compact trans-Sasakian manifolds. Mediterr. J. Math. 2016, 13, 2099–2104. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X. Ricci tensors on trans-Sasakian 3-manifolds. Filomat 2018, in press. [Google Scholar]
- Wang, Y. Minimal and harmonic Reeb vector fields on trans-Sasakian 3-manifolds. J. Korean Math. Soc. 2018, 55, 1321–1336. [Google Scholar]
- Cho, J.T. Contact 3-manifolds with the Reeb-flow symmetry. Tohoku Math. J. 2014, 66, 491–500. [Google Scholar] [CrossRef]
- Cho, J.T. Reeb flow symmetry on almost cosymplectic three-manifolds. Bull. Korean Math. Soc. 2016, 53, 1249–1257. [Google Scholar] [CrossRef]
- Cho, J.T.; Kimura, M. Reeb flow symmetry on almost contact three-manifolds. Differ. Geom. Appl. 2014, 35, 266–273. [Google Scholar] [CrossRef]
- Cho, J.T.; Chun, S.H. Reeb flow invariant unit tangent sphere bundles. Honam Math. J. 2014, 36, 805–812. [Google Scholar] [CrossRef]
- Suh, Y.J. Real hypersurfaces in complex two-plane Grassmannians with ξ-invariant Ricci tensor. J. Geom. Phys. 2011, 61, 808–814. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Springer: Berlin, Gernamy, 2010. [Google Scholar]
- Olszak, Z. Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. 1986, 47, 41–50. [Google Scholar] [CrossRef]
- Chinea, D.; Gonzalez, C. A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 1990, 156, 15–36. [Google Scholar] [CrossRef]
- Janssens, D.; Vanhecke, L. Almost contact structures and curvature tensors. Kodai Math. J. 1981, 4, 1–27. [Google Scholar] [CrossRef]
- De, U.C.; Tripathi, M.M. Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J. 2003, 43, 247–255. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, W.; Liu, X. Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator. Mathematics 2018, 6, 246. https://doi.org/10.3390/math6110246
Zhao Y, Wang W, Liu X. Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator. Mathematics. 2018; 6(11):246. https://doi.org/10.3390/math6110246
Chicago/Turabian StyleZhao, Yan, Wenjie Wang, and Ximin Liu. 2018. "Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator" Mathematics 6, no. 11: 246. https://doi.org/10.3390/math6110246
APA StyleZhao, Y., Wang, W., & Liu, X. (2018). Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator. Mathematics, 6(11), 246. https://doi.org/10.3390/math6110246