Next Article in Journal / Special Issue
Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces
Previous Article in Journal
Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs
Previous Article in Special Issue
The Combination Projection Method for Solving Convex Feasibility Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Strong Convergence Theorems for Fixed Point Problems for Nonexpansive Mappings and Zero Point Problems for Accretive Operators Using Viscosity Implicit Midpoint Rules in Banach Spaces

1
Qinggong College, North China University of Science and Technology, Tangshan 063000, China
2
Qian’an College, North China University of Science and Technology, Tangshan 064400, China
3
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(11), 257; https://doi.org/10.3390/math6110257
Submission received: 13 October 2018 / Revised: 11 November 2018 / Accepted: 14 November 2018 / Published: 16 November 2018
(This article belongs to the Special Issue Fixed Point Theory and Related Nonlinear Problems with Applications)

Abstract

:
This paper uses the viscosity implicit midpoint rule to find common points of the fixed point set of a nonexpansive mapping and the zero point set of an accretive operator in Banach space. Under certain conditions, this paper obtains the strong convergence results of the proposed algorithm and improves the relevant results of researchers in this field. In the end, this paper gives numerical examples to support the main results.

1. Introduction

Let E be a Banach Space and E * the dual space. J denotes the normalized duality mapping from E to 2 E * and is defined by
J ( x ) = { f E * : < x , f > = x 2 = f 2 } ,    x E .  
Let C be a nonempty set of E . A mapping f : C C is contractive, if f ( x ) f ( y ) k x y , x , y C , k [ 0 , 1 ) . A mapping S : C C is nonexpansive, if S ( x ) S ( y ) x y , x , y C . Let F ( S ) denote the fixed point set of S .
A : C E is called accretive operator, if there exists j ( x y ) J ( x y ) such that A x A y , j ( x y ) 0 , for any x , y C . If R ( I + r A ) = E , r > 0 , then A is called m -accretive operator. J r : R ( I + r A ) D ( A ) is called the resolvent of m -accretive operator A and defined by J r = ( I + r A ) 1 , r > 0 . It is well known that J r is nonexpansive mapping and N ( A ) = F ( J r ) , where N ( A ) = { x E : 0 A x } and F ( J r ) is the fixed point set of J r . So fixed point theory of nonexpansive mappings has been applied to zero point problem of accretive operator, see [1,2,3,4,5,6] and the references therein.
The implicit midpoint rule is one of the powerful methods for solving ordinary differential equations; see [7,8,9,10,11,12] and the references therein. Moreover, viscosity iterative algorithms for finding common fixed points for nonlinear operators and solutions of variational inequality problems have been researched by many authors.
In 2009, Chang et al. [1] proposed a viscosity iterative algorithm for accretive operator and nonexpansive mapping:
{ x 0 = x C , y n = β n x n + ( 1 β n ) S J r x n , x n + 1 = α n f ( x n ) + ( 1 α n ) y n , n 0 .  
In 2010, Jung [13] proposed a composite iterative algorithm by viscosity method for finding the zero point of an accretive operator:
{ x 0 = x C , y n = β n x n + ( 1 β n ) J r n x n , x n + 1 = α n f ( x n ) + ( 1 α n ) y n , n 0 .  
In 2016, Jung [14] extended the related results and proposed an iterative algorithm for finding common point of zero of accretive operator and fixed point of nonexpansive mapping:
x n + 1 = J r n ( α n f ( x n ) + ( 1 α n ) S x n ) , n 0 , x n + 1 = J r n ( α n f ( x n ) + ( 1 α n ) S x n + e n ) , n 0 .  
In 2017, Li [15] introduced a new iterative algorithm in a real reflexive Banach space E with the uniformly G a ^ t e a u x differentiable norm and C is a nonempty closed convex subset of E which has the normal structure:
{ x 0 = x C , y n = β n S J r n ( e n + x n ) + ( 1 β n ) x n , x n + 1 = α n T ( x n ) + ( 1 α n ) y n , n 0 .  
In 2015, Xu et al. [16] used viscosity iterative algorithm to implicit midpoint rule for nonexpansive mapping in Hilbert space and proposed viscosity implicit midpoint rule: { x n } was generated by the following
x n + 1 = α n f ( x n ) + ( 1 α n ) T ( x n + x n + 1 2 ) ,   n 0 .
Under some conditions on { α n } , they obtained that { x n } strongly converged to q F ( T ) , and q was the solution of variational inequality ( I f ) q , x q 0 , x F ( T ) .
In 2017, Luo et al. [17] extended the results of Xu et al. [16] from Hilbert space to uniformly smooth Banach space: { x n } was generated by the following
x n + 1 = α n f ( x n ) + ( 1 α n ) T ( x n + x n + 1 2 ) ,   n 0 .
Under some conditions, they obtained that { x n } strongly converged to q F ( T ) , and q was the solution of variational inequality ( I f ) q , j ( x q ) 0 , x F ( T ) .
Motivated and inspired by the above papers, this paper uses the viscosity implicit midpoint rule to find common points of the fixed point set of a nonexpansive mapping and the zero point set of an accretive operator in Banach space and obtains the strong convergence results and improves the previous results. Finally, this paper gives numerical examples to support the main results.

2. Preliminaries

For all ε [ 0 , 2 ] , x = y = 1 , x y ε , if there exists δ ε > 0 such that x + y 2 < 1 δ ε , then E is called uniformly convex. A Banach space is uniformly convex if and only if there exists a continuous strictly increasing convex function g : [ 0 , + ) [ 0 , + ) with g ( 0 ) = 0 such that
λ x + ( 1 λ ) y 2 λ x 2 + ( 1 λ ) y 2 λ ( 1 λ ) g ( x y ) .
For each x , y U , U = { x E : x = 1 } , if lim t 0 x + t y x t exists, then E is said to be have a G a ^ t e a u x differentiable norm. If for each y U , the limit is attained uniformly for x U , then E is said to be have a uniformly G a ^ t e a u x differentiable norm. It is well known that if E has uniformly G a ^ t e a u x differentiable norm, then J is single valued and norm-to-weak* uniformly continuous on each bounded subset of E , see [18].
Let C be a closed convex subset of E . If for each bounded closed convex subset D of C which contains at least two points, there exists one element x D which is not a diametral point of D such that d i a m ( D ) > sup { x y : y D } , where d i a m ( D ) is the diameter of D , then C is said to have normal structure.
We need the following lemmas for the proof of our main results.
Lemma 1 
[19]. For λ , μ > 0 , x E , so J λ x = J μ ( μ λ x + ( 1 μ λ ) J λ x ) .
Lemma 2 
[20]. Let { a n } , { b n } , { c n } be three nonnegative real sequences satisfying
a n + 1 ( 1 t n ) a n + b n + c n ,   n 0 ,
where { t n } ( 0 , 1 ) . If the following conditions are satisfied n = 0 t n = ; b n = o ( t n ) ; n = 1 c n < . So lim n a n = 0 .
Lemma 3 
[4,21]. Let E be a real reflexive Banach space with the uniformly G a ^ t e a u x differentiable norm and C be nonempty closed convex subset of E which has normal structure. Let S : C C be a nonexpansive mapping with a fixed point and T : C C be a fixed contraction with the coefficient τ ( 0 , 1 ) . Let { x S , T , t } be an sequence defined as follows
x S , T , t = t T x t + ( 1 t ) S x S , T , t ,
where t ( 0 , 1 ) . Then { x t } converges strongly as t 0 to a fixed point x * of S , which is the unique solution in F ( S ) to the following variational inequality
T x * x * , j ( x * p ) 0 ,   p F ( S ) .
Lemma 4 
[2]. In a Banach space E , there holds the inequality
x + y 2 x 2 + 2 y , j ( x + y ) ,   x , y E ,
where j ( x + y ) J ( x + y ) .

3. Main Results

Theorem 1.
Let E be a reflexive and uniformly convex Banach space which has uniformly G a ^ t e a u x differentiable norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C C be a contractive mapping with k [ 0 , 1 ) , A be a m -accretive operator in E and S : C C be a nonexpansive mapping with F ( S ) N ( A ) . For any x 0 C and n 0 , { x n } is generated by
{ y n = β n ( x n + x n + 1 2 ) + ( 1 β n ) J r n ( x n + x n + 1 2 ) , x n + 1 = α n f x n + ( 1 α n ) S y n ,  
where { α n } , { β n } ( 0 , 1 ) and { r n } ( 0 , 1 ) satisfy the following conditions:
(i) lim n α n = 0 , n = 0 α n = , | α n α n 1 | = o ( α n ) ; (ii) n = 1 | β n β n 1 | < ; (iii) lim n r n = r , n = 1 | r n r n 1 | < .
Then { x n } and { y n } converge strongly to q F ( S ) N ( A ) , where q is the unique solution of the variational inequality ( I f ) q , J ϕ ( q p ) 0 , p F ( S ) N ( A ) .
Proof. 
The proof is split into eleven steps.
Step 1: Show that { x n } and { y n } are bounded.
Take p F ( S ) N ( A ) , then we have
y n p β n x n + x n + 1 2 p + ( 1 β n ) J r n ( x n + x n + 1 2 ) p β n x n + x n + 1 2 p + ( 1 β n ) x n + x n + 1 2 p 1 2 x n p + 1 2 x n + 1 p ,
and then we get
x n + 1 p α n f x n p + ( 1 α n ) S y n p k α n x n p + α n f p p + ( 1 α n ) y n p k α n x n p + α n f p p + 1 α n 2 x n p + 1 α n 2 x n + 1 p = ( k α n + 1 α n 2 ) x n p + α n f p p + 1 α n 2 x n + 1 p .
It follows that
x n + 1 p k α n + 1 α n 2 1 + α n 2 x n p + 2 α n 1 + α n f p p = [ 1 2 α n ( 1 k ) 1 + α n ] x n p + 2 α n ( 1 k ) 1 + α n f p p 1 k max { x 0 p , f p p 1 k } .
Then { x n } and { y n } are bounded. So { f x n } , { f y n } , { S x n } , { S y n } , { J r n x n } and { J r n y n } are also bounded.
Step 2: Show that lim n x n + 1 x n = 0 .
From (2), we have
x n + 1 x n = α n f x n + ( 1 α n ) S y n α n 1 f x n 1 ( 1 α n 1 ) S y n 1 α n f x n f x n 1 + | α n α n 1 | f x n 1 S y n 1 + ( 1 α n ) S y n S y n 1 k α n x n x n 1 + | α n α n 1 | f x n 1 S y n 1 + ( 1 α n ) y n y n 1 .
From (2), we have
y n y n 1 = β n ( x n + x n + 1 2 ) + ( 1 β n ) J r n ( x n + x n + 1 2 ) β n 1 ( x n 1 + x n 2 ) ( 1 β n 1 ) J r n 1 ( x n 1 + x n 2 ) β n x n + 1 x n 1 2 + | β n β n 1 | x n 1 + x n 2 J r n 1 ( x n 1 + x n 2 ) + ( 1 β n ) J r n ( x n + x n + 1 2 ) J r n 1 ( x n 1 + x n 2 ) .
From Lemma 1, we have
J r n ( x n + x n + 1 2 ) J r n 1 ( x n 1 + x n 2 ) = J r n 1 ( r n 1 r n ( x n + x n + 1 2 ) + ( 1 r n 1 r n ) J r n ( x n + x n + 1 2 ) ) J r n 1 ( x n 1 + x n 2 ) r n 1 r n ( x n + x n + 1 2 ) + ( 1 r n 1 r n ) J r n ( x n + x n + 1 2 ) x n 1 + x n 2 = r n 1 r n ( x n + 1 x n 1 2 ) + ( 1 r n 1 r n ) ( J r n ( x n + x n + 1 2 ) x n 1 + x n 2 ) r n 1 r n x n + 1 x n 1 2 + | 1 r n 1 r n | J r n ( x n + x n + 1 2 ) x n + x n + 1 2 + | 1 r n 1 r n | x n + 1 x n 1 2 = x n + 1 x n 1 2 + | 1 r n 1 r n | J r n ( x n + x n + 1 2 ) x n + x n + 1 2 .
Put (4) and (5) into (3), we get
x n + 1 x n k α n x n x n 1 + | α n α n 1 | f x n 1 S y n 1 + ( 1 α n ) x n + 1 x n 1 2 + ( 1 α n ) | β n β n 1 | x n 1 + x n 2 J r n 1 ( x n 1 + x n 2 ) + ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | x n + x n + 1 2 J r n ( x n + x n + 1 2 ) k α n x n x n 1 + 1 α n 2 x n + 1 x n + 1 α n 2 x n x n 1 + | α n α n 1 | M 1 + [ ( 1 α n ) | β n β n 1 | + ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | ] M 2 = ( k α n + 1 α n 2 ) x n x n 1 + 1 α n 2 x n x n 1 + | α n α n 1 | M 1 + [ ( 1 α n ) | β n β n 1 | + ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | ] M 2 .
It follows that
x n + 1 x n k α n + 1 α n 2 1 + α n 2 x n x n 1 + 2 | α n α n 1 | 1 + α n M 1 + 2 ( 1 α n ) | β n β n 1 | + 2 ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | 1 + α n M 2 = [ 1 2 α n ( 1 k ) 1 + α n ] x n x n 1 + 2 | α n α n 1 | 1 + α n M 1   + 2 ( 1 α n ) | β n β n 1 | + 2 ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | 1 + α n M 2 ,
where M 1 = max f x n 1 S y n 1 and M 2 = max x n + x n + 1 2 J r n ( x n + x n + 1 2 ) .
Take t n = 2 α n ( 1 k ) 1 + α n , then t n > α n ( 1 k ) . From n = 0 α n = , so n = 0 t n = .
Take b n = 2 | α n α n 1 | 1 + α n M 1 , then b n t n = | α n α n 1 | M 1 α n ( 1 k ) . From | α n α n 1 | = o ( α n ) , so b n = o ( t n ) .
Take c n = 2 ( 1 α n ) | β n β n 1 | + 2 ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | 1 + α n M 2 . From lim n r n = r , then c n < 2 M 2 ( | β n β n 1 | + | r n r n 1 | r ε ) ( ε > 0 ) . From n = 1 | β n β n 1 | < and n = 1 | r n r n 1 | < , so n = 1 c n < .
From Lemma 2, we get lim n x n + 1 x n = 0 .
Step 3: Show that lim n x n J r n x n = 0 .
Because 2 is convex function and (1), so we have
x n + 1 p 2 α n f x n p 2 + ( 1 α n ) S y n p 2 α n f x n p 2 + ( 1 α n ) y n p 2 α n f x n p 2 + ( 1 α n ) [ β n x n + x n + 1 2 p 2 + ( 1 β n ) J r n ( x n + x n + 1 2 ) p 2    β n ( 1 β n ) g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) ] α n f x n p 2 + ( 1 α n ) x n + x n + 1 2 p 2    ( 1 α n ) β n ( 1 β n ) g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) α n f x n p 2 + 1 α n 2 x n p 2 + 1 α n 2 x n + 1 p 2    ( 1 α n ) β n ( 1 β n ) g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) .
It follows that
x n + 1 p 2 1 α n 1 + α n x n p 2 + 2 α n 1 + α n f x n p 2    2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) x n p 2 + 2 α n 1 + α n f x n p 2    2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) .
Then we have
2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) 2 α n 1 + α n f x n p 2 x n p 2 x n + 1 p 2 .
If 2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) 2 α n 1 + α n f x n p 2 , so from lim n α n = 0 and the boundedness of { f x n } , we get lim n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) = 0 .
If 2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) > 2 α n 1 + α n f x n p 2 , so
n = 0 N [ 2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) 2 α n 1 + α n f x n p 2 ] x 0 p 2 x N + 1 p 2 x 0 p 2 .
Then n = 0 [ 2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) 2 α n 1 + α n f x n p 2 ] < .
So we get
lim n [ 2 ( 1 α n ) β n ( 1 β n ) 1 + α n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) 2 α n 1 + α n f x n p 2 ] = 0 ,
and then lim n g ( x n + x n + 1 2 J r n ( x n + x n + 1 2 ) ) = 0 .
From the property of g , so we get lim n x n + x n + 1 2 J r n ( x n + x n + 1 2 ) = 0 .
We also have
x n J r n x n x n x n + x n + 1 2 + x n + x n + 1 2 J r n ( x n + x n + 1 2 ) + J r n ( x n + x n + 1 2 ) J r n x n x n + 1 x n + x n + x n + 1 2 J r n ( x n + x n + 1 2 ) .
Then from step 2, we get lim n x n J r n x n = 0 .
Step 4: Show that lim n y n S y n = 0 .
y n S y n β n x n + x n + 1 2 S y n + ( 1 β n ) J r n ( x n + x n + 1 2 ) S y n x n + x n + 1 2 S y n + ( 1 β n ) J r n ( x n + x n + 1 2 ) x n + x n + 1 2 x n + x n + 1 2 x n + 1 + x n + 1 S y n + ( 1 β n ) J r n ( x n + x n + 1 2 ) x n + x n + 1 2 = 1 2 x n x n + 1 + α n f x n S y n + ( 1 β n ) J r n ( x n + x n + 1 2 ) x n + x n + 1 2 .
From steps 2 and 3, lim n α n = 0 and the boundedness of { f x n } and { S y n } , we get lim n y n S y n = 0 .
Step 5: Show that lim n x n y n = 0 .
x n y n x n x n + 1 + x n + 1 S y n + S y n y n = x n x n + 1 + α n f x n S y n + S y n y n .
From steps 2 and 4, we get lim n x n y n = 0 .
Step 6: Show that lim n y n J r n y n = 0 .
y n J r n y n y n x n + x n J r n x n + J r n x n J r n y n 2 y n x n + x n J r n x n .
From steps 3 and 5, we get lim n y n J r n y n = 0 .
Step 7: Show that lim n x n S x n = 0 .
x n S x n x n y n + y n S y n + S y n S x n 2 x n y n + y n S y n .
From steps 4 and 5, we get lim n x n S x n = 0 .
Step 8: Show that lim n y n J r y n = 0 .
y n J r y n y n J r n y n + J r n y n J r y n = y n J r n y n + J r ( r r n y n + ( 1 r r n ) J r n y n ) J r y n y n J r n y n + | 1 r r n | J r n y n y n .
From step 6 and lim n r n = r , we get lim n y n J r y n = 0 .
Step 9: Show that lim n x n J r x n = 0 .
x n J r x n x n y n + y n J r y n + J r y n J r x n 2 x n y n + y n J r y n .
From steps 5 and 8, we get lim n x n J r x n = 0 .
Step 10: Show that lim sup n q f q , J ( q x n ) = 0 .
Let { x t } be defined by x t = t f x t + ( 1 t ) S x t . From Lemma 3, we have that { x t } converges strongly to q P F ( S ) N ( A ) f q , which is also the unique solution of the variational inequality q f q , J ( q p ) 0 , p F ( S ) N ( A ) .
We have
x t x n 2 = ( 1 t ) S x t S x n + S x n x n , J ( x t x n ) + t f x t x t + x t x n , J ( x t x n ) ( 1 t ) x t x n 2 + ( 1 t ) S x n x n x t x n + t x t x n 2 + t f x t x t , J ( x t x n ) = x t x n 2 + ( 1 t ) S x n x n x t x n + t x t x n 2 + t f x t x t , J ( x t x n ) .
It follows that f x t x t , J ( x t x n ) 1 t t S x n x n x t x n . From step 7, we get lim sup n q f q , J ( q x n ) = 0 .
Step 11: Show that lim n x n q = 0 .
From Lemma 4, we have
x n + 1 q 2 ( 1 α n ) 2 S y n q 2 + 2 α n f x n q , J ( x n + 1 q ) ( 1 α n ) 2 y n q 2 + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) ( 1 α n ) 2 ( 1 2 x n q + 1 2 x n + 1 q ) 2 + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) = ( 1 α n 2 ) 2 x n q 2 + ( 1 α n 2 ) 2 x n + 1 q 2 + ( 1 α n ) 2 2 x n q x n + 1 q + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) = ( 1 α n 2 ) 2 x n q 2 + ( 1 α n 2 ) 2 x n + 1 q 2 + [ ( 1 α n ) 2 2 + 2 k α n ] x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) ( 1 α n 2 ) 2 x n q 2 + ( 1 α n 2 ) 2 x n + 1 q 2 + [ ( 1 α n ) 2 4 + k α n ] ( x n q 2 + x n + 1 q 2 ) + 2 α n f q q , J ( x n + 1 q ) .
It follows that
x n + 1 q 2 ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n 1 [ ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n ] x n q 2 + 2 α n 1 [ ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n ] f q q , J ( x n + 1 q ) = [ 1 1 2 ( ( 1 α n ) 2 2 + k α n ) 1 ( ( 1 α n ) 2 2 + k α n ) ] x n q 2 + 2 α n 1 [ ( 1 α n ) 2 2 + k α n ] f q q , J ( x n + 1 q ) .
Take t n = 1 2 ( ( 1 α n ) 2 2 + k α n ) 1 ( ( 1 α n ) 2 2 + k α n ) . From lim n α n = 0 , we have
t n 1 2 ( ( 1 α n ) 2 2 + k α n ) = α n ( 2 2 k α n ) α n ( 2 2 k ε ) ( ε > 0 ) .
From n = 0 α n = , we get n = 0 t n = .
Take b n = 2 α n 1 [ ( 1 α n ) 2 2 + k α n ] f q q , J ( x n + 1 q ) , then we have
b n t n = 2 α n f q q , J ( x n + 1 q ) 1 2 [ ( 1 α n ) 2 2 + k α n ] = 2 f q q , J ( x n + 1 q ) 2 2 k α n .
From lim n α n = 0 and step 10, we get b n = o ( t n ) .
Take c n = 0 , then we get n = 0 c n < .
From Lemma 2, we get lim n x n q = 0 . This completes the proof. □
The results of Theorem 1 improve the related results in [13,14,16,17]. For example, this paper uses the viscosity implicit midpoint rule to find common points of the fixed point set of a nonexpansive mapping and the zero point set of an accretive operator and the results improve the related results in [13,14]; If β n = 0 , the results of Theorem 1 can obtain the related results in [16,17].
Corollary 1.
Let E be a reflexive and uniformly convex Banach space which has uniformly G a ^ t e a u x differentiable norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C C be a contractive mapping with k [ 0 , 1 ) , A be a m-accretive operator in E and S : C C be a nonexpansive mapping with F ( S ) N ( A ) . For any x 0 C and n 0 , { x n } is generated by
{ y n = β n ( x n + x n + 1 2 ) + ( 1 β n ) J r n ( x n + x n + 1 2 ) + e n , x n + 1 = α n f x n + ( 1 α n ) S y n ,  
where { α n } , { β n } ( 0 , 1 ) , { e n } E and { r n } ( 0 , 1 ) satisfy the following conditions:
(i) 
lim n α n = 0 , n = 0 α n = , | α n α n 1 | = o ( α n ) ;
(ii) 
n = 1 | β n β n 1 | < ;
(iii) 
lim n r n = r , n = 1 | r n r n 1 | < ;
(iv) 
e n = o ( α n ) .
Then { x n } and { y n } converge strongly to q F ( S ) N ( A ) , where q is the unique solution of the variational inequality ( I f ) q , J ϕ ( q p ) 0 , p F ( S ) N ( A ) .
Proof. 
Assume
{ w n = β n ( z n + z n + 1 2 ) + ( 1 β n ) J r n ( z n + z n + 1 2 ) , z n + 1 = α n f z n + ( 1 α n ) S w n .  
Then we have
x n + 1 z n + 1 k α n x n z n + ( 1 α n ) y n w n k α n x n z n + ( 1 α n ) ( x n + x n + 1 2 z n + z n + 1 2 + e n ) ( k α n + 1 α n 2 ) x n z n + 1 α n 2 x n + 1 z n + 1 + ( 1 α n ) e n .
It follows that
x n + 1 z n + 1 k α n + 1 α n 2 1 + α n 2 x n z n + 2 ( 1 α n ) 1 + α n e n = [ 1 2 α n ( 1 k ) 1 + α n ] x n z n + 2 ( 1 α n ) 1 + α n e n .
Take t n = 2 α n ( 1 k ) 1 + α n , then t n α n ( 1 k ) . From n = 0 α n = , we get n = 0 t n = .
Take b n = 2 ( 1 α n ) 1 + α n e n , then b n t n = ( 1 α n ) e n α n ( 1 k ) . From e n = o ( α n ) , we get b n = o ( t n ) .
Take c n = 0 , then we get n = 0 c n < .
From Lemma 2, we get lim n x n z n = 0 . From Theorem 1, we have { z n } and { w n } converge strongly to q F ( S ) N ( A ) , where q is the unique solution of the variational inequality ( I f ) q , J ϕ ( q p ) 0 , p F ( S ) N ( A ) . So { x n } and { y n } also converge strongly to q F ( S ) N ( A ) . This completes the proof. □
The results of Corollary 1 improve the related results in [14,16,17].
Theorem 2.
Let E be a reflexive and uniformly convex Banach space which has uniformly G a ^ t e a u x differentiable norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C C be a contractive mapping with k [ 0 , 1 ) , A be a m-accretive operator in E and S : C C be a nonexpansive mapping with F ( S ) N ( A ) . For any x 0 C and n 0 , { x n } is generated by
{ y n = β n ( x n + x n + 1 2 ) + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) , x n + 1 = α n f x n + ( 1 α n ) S y n ,  
where { α n } , { β n } ( 0 , 1 ) , { e n } E and { r n } ( 0 , 1 ) satisfy the following conditions:
(i) 
lim n α n = 0 , n = 0 α n = , | α n α n 1 | = o ( α n ) ;
(ii) 
n = 1 | β n β n 1 | < ;
(iii) 
lim n r n = r , n = 1 | r n r n 1 | < ;
(iv) 
n = 1 e n < .
Then { x n } and { y n } converge strongly to q F ( S ) N ( A ) , where q is the unique solution of the variational inequality ( I f ) q , J ϕ ( q p ) 0 , p F ( S ) N ( A ) .
Proof. 
The proof is split into eleven steps.
Step 1: Show that { x n } and { y n } are bounded.
Take p F ( S ) N ( A ) , then we have
y n p β n x n + x n + 1 2 p + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) p β n x n + x n + 1 2 p + ( 1 β n ) x n + x n + 1 2 p + ( 1 β n ) e n 1 2 x n p + 1 2 x n + 1 p + e n ,
and then we get
x n + 1 p α n f x n p + ( 1 α n ) S y n p k α n x n p + α n f p p + ( 1 α n ) y n p ( k α n + 1 α n 2 ) x n p + 1 α n 2 x n + 1 p + α n f p p + ( 1 α n ) e n .
It follows that
x n + 1 p [ 1 2 α n ( 1 k ) 1 + α n ] x n p + 2 α n 1 + α n f p p + 2 ( 1 α n ) 1 + α n e n [ 1 2 α n ( 1 k ) 1 + α n ] x n p + 2 α n ( 1 k ) 1 + α n f p p 1 k + 2 e n max { x 0 p , f p p 1 k + 2 e n } .
Then { x n } and { y n } are bounded. So { f x n } , { f y n } , { S x n } , { S y n } , { J r n x n } and { J r n y n } are also bounded.
Step 2: Show that lim n x n + 1 x n = 0 .
From (6), we have
x n + 1 x n = α n f x n + ( 1 α n ) S y n α n 1 f x n 1 ( 1 α n 1 ) S y n 1 α n f x n f x n 1 + | α n α n 1 | f x n 1 S y n 1 + ( 1 α n ) S y n S y n 1 k α n x n x n 1 + | α n α n 1 | f x n 1 S y n 1 + ( 1 α n ) y n y n 1 .
From (6), we have
y n y n 1 β n x n + 1 x n 1 2 + | β n β n 1 | x n 1 + x n 2 J r n 1 ( x n 1 + x n 2 + e n 1 ) + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) J r n 1 ( x n 1 + x n 2 + e n 1 ) .
From Lemma 1, we have
   J r n ( x n + x n + 1 2 + e n ) J r n 1 ( x n 1 + x n 2 + e n 1 ) = J r n 1 ( r n 1 r n ( x n + x n + 1 2 + e n ) + ( 1 r n 1 r n ) J r n ( x n + x n + 1 2 + e n ) ) J r n 1 ( x n 1 + x n 2 + e n 1 ) r n 1 r n ( x n + x n + 1 2 + e n ) + ( 1 r n 1 r n ) J r n ( x n + x n + 1 2 + e n ) ( x n 1 + x n 2 + e n 1 ) r n 1 r n x n + 1 x n 1 2 + e n e n 1 + | 1 r n 1 r n | J r n ( x n + x n + 1 2 + e n ) ( x n + x n + 1 2 + e n )    + | 1 r n 1 r n | x n + 1 x n 1 2 + e n e n 1 = x n + 1 x n 1 2 + e n e n 1 + | 1 r n 1 r n | J r n ( x n + x n + 1 2 ) ( x n + x n + 1 2 + e n ) .
Put (8) and (9) into (7), we get
x n + 1 x n k α n x n x n 1 + | α n α n 1 | M 1 + ( 1 α n ) x n + 1 x n 1 2    + ( 1 α n ) | β n β n 1 | M 3 + ( 1 α n ) ( 1 β n ) e n e n 1    + ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | M 4 ( k α n + 1 α n 2 ) x n x n 1 + 1 α n 2 x n + 1 x n + | α n α n 1 | M 1    + ( 1 α n ) | β n β n 1 | M 3 + ( 1 α n ) ( 1 β n ) e n e n 1    + ( 1 α n ) ( 1 β n ) | 1 r n 1 r n | M 4 .
It follows that
x n + 1 x n = [ 1 2 α n ( 1 k ) 1 + α n ] x n x n 1 + 2 | α n α n 1 | 1 + α n M 1 + 2 ( 1 α n ) 1 + α n | β n β n 1 | M 3 + 2 ( 1 α n ) ( 1 β n ) 1 + α n ( e n + e n 1 ) + 2 ( 1 α n ) ( 1 β n ) | r n r n 1 | ( 1 + α n ) r n M 4 ,
where
M 3 = max x n + x n + 1 2 J r n ( x n + x n + 1 2 + e n ) ,   M 4 = max J r n ( x n + x n + 1 2 + e n ) ( x n + x n + 1 2 + e n ) .
Take t n = 2 α n ( 1 k ) 1 + α n , then t n > α n ( 1 k ) . From n = 0 α n = , so n = 0 t n = .
Take b n = 2 | α n α n 1 | 1 + α n M 1 , then b n t n = | α n α n 1 | M 1 α n ( 1 k ) . From | α n α n 1 | = o ( α n ) , so b n = o ( t n ) .
Take
c n = 2 ( 1 α n ) 1 + α n | β n β n 1 | M 3 + 2 ( 1 α n ) ( 1 β n ) 1 + α n ( e n + e n 1 ) + 2 ( 1 α n ) ( 1 β n ) | r n r n 1 | ( 1 + α n ) r n M 4 ,
then c n < 2 | β n β n 1 | M 3 + 2 ( e n + e n 1 ) + 2 | r n r n 1 | M 4 r + ε ( ε > 0 ) .
From n = 1 | β n β n 1 | < , n = 1 e n < , lim n r n = r and n = 1 | r n r n 1 | < , so n = 1 c n < .
From Lemma 2, we get lim n x n + 1 x n = 0 .
Step 3: Show that lim n x n J r n x n = 0 .
Because 2 is convex function and (1), so we have
x n + 1 p 2 α n f x n p 2 + ( 1 α n ) S y n p 2 α n f x n p 2 + ( 1 α n ) y n p 2 α n f x n p 2 + ( 1 α n ) β n x n + x n + 1 2 p 2    + ( 1 α n ) ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) p 2 = α n f x n p 2 + ( 1 α n ) [ β n x n + x n + 1 2 p 2    + ( 1 β n ) J r n 2 ( 1 2 ( x n + x n + 1 2 + e n ) + 1 2 J r n ( x n + x n + 1 2 + e n ) ) p 2 ] α n f x n p 2 + ( 1 α n ) β n x n + x n + 1 2 p 2    + ( 1 α n ) ( 1 β n ) 1 2 ( x n + x n + 1 2 + e n p ) + 1 2 ( J r n ( x n + x n + 1 2 + e n ) p ) 2 α n f x n p 2 + ( 1 α n ) β n x n + x n + 1 2 p 2    + ( 1 α n ) ( 1 β n ) x n + x n + 1 2 + e n p 2    ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) α n f x n p 2 + ( 1 α n ) β n x n + x n + 1 2 p 2    + ( 1 α n ) ( 1 β n ) x n + x n + 1 2 + e n p 2    ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) α n f x n p 2 + ( 1 α n ) β n x n + x n + 1 2 p 2 2    + ( 1 α n ) ( 1 β n ) x n + x n + 1 2 + e n p    + ( 1 α n ) ( 1 β n ) ( x n + x n + 1 2 p 2 + 2 e n , J ( x n + x n + 1 2 + e n p ) )    ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) = α n f x n p 2 + ( 1 α n ) x n + x n + 1 2 p 2    + 2 ( 1 α n ) ( 1 β n ) e n , J ( x n + x n + 1 2 + e n p )    ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) α n f x n p 2 + 1 α n 2 x n p 2 + 1 α n 2 x n + 1 p 2    + 2 ( 1 α n ) ( 1 β n ) e n , J ( x n + x n + 1 2 + e n p )    ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) .
It follows that
x n + 1 p 2 1 α n 1 + α n x n p 2 + 2 α n 1 + α n f x n p 2 + ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) x n p 2 + 2 α n 1 + α n f x n p 2 + ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) .
Then we have
( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p x n p 2 x n + 1 p 2 .
If ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 + ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p , so from lim n α n = 0 , step 1 and n = 0 e n < , we get lim n g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) = 0 .
If ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 + ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p , so
n = 0 N [ ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p ] x 0 p 2 x N + 1 p 2 x 0 p 2 .
Then
n = 0 [ ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p ] < .
So we get
lim n [ ( 1 α n ) ( 1 β n ) 4 g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) 2 α n 1 + α n f x n p 2 ( 1 α n ) ( 1 β n ) 1 + α n e n x n + x n + 1 2 + e n p ] = 0
and then lim n g ( x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) ) = 0 .
From the property of g , so we get lim n x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) = 0 .
We also have
x n J r n x n x n ( x n + x n + 1 2 + e n ) + x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) + J r n ( x n + x n + 1 2 + e n ) J r n x n 2 x n ( x n + x n + 1 2 + e n ) + x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) x n x n + 1 + 2 e n + x n + x n + 1 2 + e n J r n ( x n + x n + 1 2 + e n ) .
Then from step 2 and n = 0 e n < , we get lim n x n J r n x n = 0 .
Step 4: Show that lim n y n S y n = 0 .
y n S y n β n x n + x n + 1 2 S y n + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) S y n x n + x n + 1 2 S y n + ( 1 β n ) e n + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) ( x n + x n + 1 2 + e n ) x n + x n + 1 2 x n + 1 + x n + 1 S y n + ( 1 β n ) e n + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) ( x n + x n + 1 2 + e n ) 1 2 x n x n + 1 + α n f x n S y n + ( 1 β n ) e n   + ( 1 β n ) J r n ( x n + x n + 1 2 + e n ) ( x n + x n + 1 2 + e n ) .
From step 1, step 2, step 3, lim n α n = 0 and n = 0 e n < , we get lim n y n S y n = 0 .
Step 5: Show that lim n x n y n = 0 .
x n y n x n x n + 1 + x n + 1 S y n + S y n y n = x n x n + 1 + α n f x n S y n + S y n y n .
From step1, step 2, step 4 and lim n α n = 0 , we get lim n x n y n = 0 .
Step 6: Show that lim n y n J r n y n = 0 .
y n J r n y n y n x n + x n J r n x n + J r n x n J r n y n 2 y n x n + x n J r n x n .
From steps 3 and 5, we get lim n y n J r n y n = 0 .
Step 7: Show that lim n x n S x n = 0 .
x n S x n x n y n + y n S y n + S y n S x n 2 x n y n + y n S y n .
From steps 4 and 5, we get lim n x n S x n = 0 .
Step 8: Show that lim n y n J r y n = 0 .
y n J r y n y n J r n y n + J r n y n J r y n = y n J r n y n + J r ( r r n y n + ( 1 r r n ) J r n y n ) J r y n y n J r n y n + | 1 r r n | J r n y n y n .
From step 6 and lim n r n = r , we get lim n y n J r y n = 0 .
Step 9: Show that lim n x n J r x n = 0 .
x n J r x n x n y n + y n J r y n + J r y n J r x n 2 x n y n + y n J r y n .
From steps 5 and 8, we get lim n x n J r x n = 0 .
Step 10: Show that lim sup n q f q , J ( q x n ) = 0 .
From Theorem 1, we have that { x t } converges strongly to q P F ( S ) N ( A ) f q , which is also the unique solution of the variational inequality q f q , J ( q p ) 0 , p F ( S ) N ( A ) .
We have
x t x n 2 = ( 1 t ) S x t S x n + S x n x n , J ( x t x n ) + t f x t x t + x t x n , J ( x t x n ) ( 1 t ) x t x n 2 + ( 1 t ) S x n x n x t x n + t x t x n 2 + t f x t x t , J ( x t x n ) = x t x n 2 + ( 1 t ) S x n x n x t x n + t x t x n 2 + t f x t x t , J ( x t x n ) .
It follows that f x t x t , J ( x t x n ) 1 t t S x n x n x t x n . From step 1 and step 7, we get lim sup n q f q , J ( q x n ) = 0 .
Step 11: Show that lim n x n q = 0 .
From Lemma 4, we have
x n + 1 q 2 ( 1 α n ) 2 S y n q 2 + 2 α n f x n q , J ( x n + 1 q ) ( 1 α n ) 2 y n q 2 + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) ( 1 α n ) 2 ( 1 2 x n q + 1 2 x n + 1 q + e n ) 2 + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) = ( 1 α n 2 ) 2 x n q 2 + ( 1 α n 2 ) 2 x n + 1 q 2 + ( 1 α n ) 2 e n 2 + ( 1 α n ) 2 2 x n q x n + 1 q + ( 1 α n ) 2 x n q e n + ( 1 α n ) 2 x n + 1 q e n + 2 k α n x n q x n + 1 q + 2 α n f q q , J ( x n + 1 q ) ( 1 α n 2 ) 2 x n q 2 + ( 1 α n 2 ) 2 x n + 1 q 2 + [ ( 1 α n ) 2 4 + k α n ] ( x n q 2 + x n + 1 q 2 ) + ( 1 α n ) 2 e n 2 + ( 1 α n ) 2 e n ( x n q + x n + 1 q ) + 2 α n f q q , J ( x n + 1 q ) .
It follows that
x n + 1 q 2 ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n 1 [ ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n ] x n q 2 + 2 α n 1 [ ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n ] f q q , J ( x n + 1 q ) + ( 1 α n ) 2 e n 1 [ ( 1 α n 2 ) 2 + ( 1 α n ) 2 4 + k α n ] ( x n q + x n + 1 q + e n ) = [ 1 1 2 ( ( 1 α n ) 2 2 + k α n ) 1 ( ( 1 α n ) 2 2 + k α n ) ] x n q 2   + 2 α n 1 [ ( 1 α n ) 2 2 + k α n ] f q q , J ( x n + 1 q ) + ( 1 α n ) 2 e n 1 [ ( 1 α n ) 2 2 + k α n ] ( x n q + x n + 1 q + e n ) .
Take t n = 1 2 ( ( 1 α n ) 2 2 + k α n ) 1 ( ( 1 α n ) 2 2 + k α n ) . From lim n α n = 0 , we have
t n 1 2 ( ( 1 α n ) 2 2 + k α n ) = α n ( 2 2 k α n ) α n ( 2 2 k ε ) ( ε > 0 ) .
From n = 0 α n = , we get n = 0 t n = .
Take b n = 2 α n 1 [ ( 1 α n ) 2 2 + k α n ] f q q , J ( x n + 1 q ) , then we have
b n t n = 2 α n f q q , J ( x n + 1 q ) 1 2 [ ( 1 α n ) 2 2 + k α n ] = 2 f q q , J ( x n + 1 q ) 2 2 k α n .
From lim n α n = 0 and step 10, we get b n = o ( t n ) .
Take c n = ( 1 α n ) 2 e n 1 [ ( 1 α n ) 2 2 + k α n ] ( x n q + x n + 1 q + e n ) , then
c n = 2 ( 1 α n ) 2 e n 1 + α n ( 2 2 k α n ) ( x n q + x n + 1 q + e n ) .
From k ( 0 , 1 ) and α n ( 0 , 1 ) , we get α n ( 2 2 k α n ) > 0 , and then c n < 2 ( x n q + x n + 1 q + e n ) e n . From n = 0 e n < , we get n = 0 c n < .
From Lemma 2, we get lim n x n q = 0 . This completes the proof. □
The results of Theorem 2 improve the related results in [15,16,17]. For example, the results of Theorem 2 is can obtain the related results in [15,16,17]; the rate of convergence and computational accuracy is better than their in [15,16,17].

4. Numerical Examples

We give four numerical examples to support the main results.
Example 1.
Let R be the real line with Euclidean norm, f : R R be defined by f ( x ) = x 6 , S : R R be defined by S ( x ) = x 4 and J r n x = r n x 2 . So F ( T ) = { 0 } . Let α n = 1 n , β n = 1 n and r n = 1 1 n , then they satisfy the conditions of Theorem 1. { x n } is generated by (2). From Theorem 1, we can obtain { x n } converges strongly to 0.
Next, we simplify the form of (2) and get
x n + 1 = 3 9 n + 9 n 2 + 3 n 3 14 n 4 3 + 9 n 9 n 2 51 n 3 + 6 n 4 x n .
Next, we take x 1 = 1 into (10). Finally, we get the following numerical results in Figure 1.
Example 2.
Let R be the real line with Euclidean norm, f : R R be defined by f ( x ) = x 6 , S : R R be defined by S ( x ) = x 4 and J r n x = r n x 2 . So F ( T ) = { 0 } . Let α n = 1 n , β n = 1 n , r n = 1 1 n and e n = 1 n 2 , then they satisfy the conditions of Theorem 2. { x n } is generated by (6). From Theorem 2, we can obtain { x n } converges strongly to 0.
Next, we simplify the form of (6) and get
x n + 1 = 2 ( n 1 ) 2 n 4 1 + 3 n 3 n 2 17 n 3 + 2 n 4 x n .
Next, we take x 1 = 1 into (11). Finally, we get the following numerical results in Figure 2.
Example 3.
Let , : R 3 × R 3 R be the inner product and defined by
x , y = x 1 y 1 + x 2 y 2 + x 2 y 3 .
Let : R 3 R be the usual norm and defined by x = x 1 2 + x 2 2 + x 3 2 for any x = ( x 1 , x 2 , x 3 ) .
For any x R 3 , let f : R 3 R 3 be defined by f ( x ) = x 6 , S : R 3 R 3 be defined by S ( x ) = x 4 and J r n x = r n x 2 . So F ( T ) = { 0 } . Let α n = 1 n , β n = 1 n and r n = 1 1 n , then they satisfy the conditions of Theorem 1. { x n } is generated by (2). From Theorem 1, we can obtain { x n } converges strongly to 0.
Next, we simplify the form of (2) and get
x n + 1 = 3 9 n + 9 n 2 + 3 n 3 14 n 4 3 + 9 n 9 n 2 51 n 3 + 6 n 4 x n .
Next, we take x 1 = ( 1 , 2 , 3 ) into (12). Finally, we get the following numerical results in Figure 3.
Example 4.
Let , : R 3 × R 3 R be the inner product and defined by
x , y = x 1 y 1 + x 2 y 2 + x 2 y 3 .
Let : R 3 R be the usual norm and defined by x = x 1 2 + x 2 2 + x 3 2 for any x = ( x 1 , x 2 , x 3 ) .
For any x R 3 , let f : R 3 R 3 be defined by f ( x ) = x 6 , S : R 3 R 3 be defined by S ( x ) = x 4 and J r n x = r n x 2 . So F ( T ) = { 0 } . Let α n = 1 n , β n = 1 n , r n = 1 1 n and e n = 1 n 2 , then they satisfy the conditions of Theorem 2. { x n } is generated by (6). From Theorem 2, we can obtain { x n } converges strongly to 0.
Next, we simplify the form of (6) and get
x n + 1 = 2 ( n 1 ) 2 n 4 1 + 3 n 3 n 2 17 n 3 + 2 n 4 x n .
Next, we take x 1 = ( 1 , 10 , 100 ) into (13). Finally, we get the following numerical results in Figure 4.

Author Contributions

Conceptualization, H.Z.; Funding acquisition, Y.Q.; Methodology, Y.S.

Funding

This research was funded by [National Natural Science Foundation of Hebei Province] grant number [E2016209304] and the APC was funded by [National Natural Science Foundation of Hebei Province].

Acknowledgments

This research is supported by the National Natural Science Foundation of Hebei Province (No. E2016209304).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chang, S.S.; Lee, H.W.J.; Chan, C.K. Strong convergence theorems by viscosity approximation methods for accretive mappings and nonexpansive mappings. J. Appl. Math. Inform. 2009, 27, 59–68. [Google Scholar]
  2. Jung, J.S.; Cho, Y.J.; Zhou, H.Y. Iterative processes with mixed errors for nonlinear equationswith perturbed m-accretive operators in Banach spaces. Appl. Math. Comput. 2002, 133, 389–406. [Google Scholar]
  3. Moudafi, A. Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef]
  4. Qin, X.L.; Cho, S.Y.; Wang, L. Iterative algorithms with errors for zero points of m-accretive Operators. Fixed Point Theory Appl. 2013, 2013, 148. [Google Scholar] [CrossRef]
  5. Reich, S. Approximating zeros of accretive operators. Proc. Am. Math. Soc. 1975, 51, 381–384. [Google Scholar] [CrossRef]
  6. Reich, S. On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. 1976, 54, 26–36. [Google Scholar] [CrossRef]
  7. Auzinger, W.; Frank, R. Asymptotic error expansions for stiff equations: An analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case. Numer. Math. 1989, 56, 469–499. [Google Scholar] [CrossRef]
  8. Bader, G.; Deuflhard, P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 1983, 41, 373–398. [Google Scholar] [CrossRef]
  9. Deuflhard, P. Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 1985, 27, 505–535. [Google Scholar] [CrossRef]
  10. Schneider, C. Analysis of the linearly implicit mid-point rule for differential-algebra equations. Electron. Trans. Numer. Anal. 1993, 1, 1–10. [Google Scholar]
  11. Somalia, S. Implicit midpoint rule to the nonlinear degenerate boundary value problems. Int. J. Comput. Math. 2002, 79, 327–332. [Google Scholar] [CrossRef]
  12. Van Veldhuxzen, M. Asymptotic expansions of the global error for the implicit midpoint rule (stiff case). Computing 1984, 33, 185–192. [Google Scholar] [CrossRef]
  13. Jung, J.S. Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces. Nonlinear Anal. 2010, 72, 449–459. [Google Scholar] [CrossRef]
  14. Jung, J.S. Strong convergence of an iterative algorithm for accretive operators and nonexpansive mappings. J. Nonlinear Sci. Appl. 2016, 9, 2394–2409. [Google Scholar] [CrossRef] [Green Version]
  15. Li, D.F. On nonexpansive and accretive operators in Banach spaces. J. Nonlinear Sci. Appl. 2017, 10, 3437–3446. [Google Scholar] [CrossRef] [Green Version]
  16. Xu, H.K.; Alghamdi, M.A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 2015, 41. [Google Scholar] [CrossRef] [Green Version]
  17. Luo, P.; Cai, G.; Shehu, Y. The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces. J. Inequal. Appl. 2017, 2017, 154. [Google Scholar] [CrossRef] [PubMed]
  18. Reich, S. On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. Appl. 1981, 79, 113–126. [Google Scholar] [CrossRef]
  19. Barbu, V. Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste Romania 1976, 2, 1–6. [Google Scholar]
  20. Liu, L.S. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef]
  21. Reich, S. Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 1980, 75, 287–292. [Google Scholar] [CrossRef]
Figure 1. Numerical results.
Figure 1. Numerical results.
Mathematics 06 00257 g001
Figure 2. Numerical results.
Figure 2. Numerical results.
Mathematics 06 00257 g002
Figure 3. Numerical results.
Figure 3. Numerical results.
Mathematics 06 00257 g003
Figure 4. Numerical results.
Figure 4. Numerical results.
Mathematics 06 00257 g004

Share and Cite

MDPI and ACS Style

Zhang, H.; Qu, Y.; Su, Y. Strong Convergence Theorems for Fixed Point Problems for Nonexpansive Mappings and Zero Point Problems for Accretive Operators Using Viscosity Implicit Midpoint Rules in Banach Spaces. Mathematics 2018, 6, 257. https://doi.org/10.3390/math6110257

AMA Style

Zhang H, Qu Y, Su Y. Strong Convergence Theorems for Fixed Point Problems for Nonexpansive Mappings and Zero Point Problems for Accretive Operators Using Viscosity Implicit Midpoint Rules in Banach Spaces. Mathematics. 2018; 6(11):257. https://doi.org/10.3390/math6110257

Chicago/Turabian Style

Zhang, Huancheng, Yunhua Qu, and Yongfu Su. 2018. "Strong Convergence Theorems for Fixed Point Problems for Nonexpansive Mappings and Zero Point Problems for Accretive Operators Using Viscosity Implicit Midpoint Rules in Banach Spaces" Mathematics 6, no. 11: 257. https://doi.org/10.3390/math6110257

APA Style

Zhang, H., Qu, Y., & Su, Y. (2018). Strong Convergence Theorems for Fixed Point Problems for Nonexpansive Mappings and Zero Point Problems for Accretive Operators Using Viscosity Implicit Midpoint Rules in Banach Spaces. Mathematics, 6(11), 257. https://doi.org/10.3390/math6110257

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop