A Lichnerowicz–Obata–Cheng Type Theorem on Finsler Manifolds
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Regularity: is smooth in ;
- (ii)
- Positive homogeneity: for ;
- (iii)
- Strong convexity: The fundamental quadratic form
3. The Proof of the Main Theorem
4. A Comparison Theorem on the Hessian
Author Contributions
Funding
Conflicts of Interest
References
- Lichnerowicz, A. Géometrie des Groupes de Transformations; Travaux et Recherches Mathémtiques, III; Dunod: Paris, French, 1958. [Google Scholar]
- Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340. [Google Scholar] [CrossRef]
- Cheng, S.Y. Eigenvalue comparison theorems and its geometric applications. Math. Z. 1975, 143, 289–297. [Google Scholar] [CrossRef]
- Kim, C.W.; Yim, J.W. Finsler manifolds with positive constant flag curvature. Geom. Dedicata 2003, 98, 47–56. [Google Scholar] [CrossRef]
- Yin, S.T.; He, Q.; Shen, Y.B. On lower bounds of the first eigenvalue of Finsler–Laplacian. Publ. Math. 2013, 83, 385–405. [Google Scholar] [CrossRef]
- Yin, S.T.; He, Q. The maximum diam theorem on Finsler manifolds. arXiv, 2018; arXiv:1801.04527v1. [Google Scholar]
- Ohta, S. Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 2009, 36, 211–249. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.Y.; Xin, Y.L. Comparison theorems in Finsler geometry and their applications. Math. Ann. 2007, 337, 177–196. [Google Scholar] [CrossRef]
- Ohta, S.; Sturm, K.-T. Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds. Adv. Math. 2014, 252, 429–448. [Google Scholar] [CrossRef]
- Ohta, S.; Sturm, K.-T. Heat Flow on Finsler Manifolds. Commun. Pure Appl. Math. 2009, 62, 1386–1433. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Zhang, P. A Lichnerowicz–Obata–Cheng Type Theorem on Finsler Manifolds. Mathematics 2018, 6, 311. https://doi.org/10.3390/math6120311
Yin S, Zhang P. A Lichnerowicz–Obata–Cheng Type Theorem on Finsler Manifolds. Mathematics. 2018; 6(12):311. https://doi.org/10.3390/math6120311
Chicago/Turabian StyleYin, Songting, and Pan Zhang. 2018. "A Lichnerowicz–Obata–Cheng Type Theorem on Finsler Manifolds" Mathematics 6, no. 12: 311. https://doi.org/10.3390/math6120311